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SECTION 1

BACKGROUND AND PROBLEM STATEMENT :

\ A\

K\\j.1 HISTORY OF CURRENT RESEARCH PROGRAM g

\\Nj>The Large Space Structure (LSS) research program was originally for- ~

mulated in late 1982 in response to the increasing concern that Eﬂ&{ﬁ
performance robustness of Air Force LSS type systems would be inadequate ;i}itﬁ
to meet mission objectives. In particular, uncertainties in both system ;:‘S“(

dynamics and disturbance spectra characterizations (both time varying and
stochastic uncertainty) significantly limit the performance attainable
with fixed gain, fixed architecture controls. Therefore, the use of an

adaptive system, where disturbances and/or plant models are identified

prior to or during control, gives systems designers more options for mini-

{:rr-n

AN

mizing the risk in achieving performance objectives. :::.:;;
.-.'- ., ';; B

A N

AR

The aim of adaptive control is to implement in real-time and on-line Ty

as many as possible of the design functiogg,now performed off-line by the
control engineer; to give the controller "intelligence™. To realize this
aim, both a theory of stability and performance of such inherently non-

linear controls is essential as well as a technolqu capable of achieving
the implementation. As has been noted by Astrom‘(;;g:Bjrecent advances in

each of these fronts have brought us to the position where adaptive con-

trol has been applied to many processes and standard adaptive controllers
can be purchased, e.g., Egardt (1984),. -

—

First Year Technical Results (1 June 1983 - 31 May 1984)

Motivated by the uncertain order of LSS models, the first year re-

search was originally directed toward using variable order adaptive
systems. Early in the research, however, lack of a well-developed robust-
ness theory for adaptive mechanizations required a reexamination of the

problem at a more fundamental level, i.e., development of model and dis-
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turbance uncertainty bounds for which adaptive algorithms would exhibit - g';?ﬁ
(stable) desired performance. Adaptive theory at that time only con- o lﬁ,c
sidered model and disturbance parameter uncertainty, and hence, did not !!;)\ x
provide the means to obtain the relation between achievable performance - hﬂﬁs
Su,
and unmodeled effects, e.g., unmodeled residual modes and small broadband f.EeﬁQ
)
disturbance. The theory required: Jﬁ&
“6 'n -
(1) a complete parametric model (no unmodeled dynamics/disturbance) e ?:fi‘
N )
(2) known model order i
T e
(3) known high frequency gain _—
oty
LI L
Under these conditions, it was possible to show that the adaptive system va };u}
was globally stable, i.e., all the signals remained bounded for any init- gﬂkﬁ:
R Y
ial set of parameter values and any bounded reference command. If, in- 52 DALY
addition, the reference input was "sufficiently rich", then the parameters .
converged exponentially fast to a unique tuned set of values (the paper by ??:t;bf
LI S LS
Goodwin, Ramadge, and Caines (1980) summarizes the above theory). ";} x;
A
o elan
For the LSS problem, it is not possible to satisfy a single one of S .
A
L% \' .

the above theoretical requirements. In the first place, the LSS is NN
theoretically of infinite order and a complete parametric model would be a "
partial differential equation, not the ordinary differential equation re-
quired by the theory. Secondly, and most importantly, the theory could
not tolerate even small deviations from the above assumptions. It was

shown in simulations by Rohrs et al. (1981, 1982) that unmodeled high fre-

quency dynamics, together with a small high frequency noise - both well
outside the controller bandwidth - could cause a parameter drift which
eventually destabilized the system. This drift phenomena was also re-
ported to occur in on-site process control applications where it was
necessary to re-set the parameters every so often (Wittenmark and Astrom,
1982). Simulation studies involving LSS exhibited similar problems where
the parameters would not converge unless the initial parameter values were
close to the unknown tuned values (Gupta, Lyons et al., 1981; Sundararajan

and Montgomery, 1982).
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Because of these difficulties, the first year effort focused on re-
laxing the requirements on adaptive theory by emphasizing local rather
than global results, The distinction between global and local is that in
local theory there are restrictions on the magnitudes and frequency con-
tent of the inputs as well as the initial parameter values. In global
theory there are no such restrictions. Thus, the local theory is more

practical and is able to use a priori information that is available.

To summarize, there were two major accomplishments in the first year
effort:

(1) Development of a local theory of adaptive control with broad
applicability. These results are reported in several joint
papers by Kosut and co-workers from 1982-1984 (see References).

(2) Methodology development for LSS based on the above local
theory. This result used key ideas from parameter estimation
and robust control design under "slow" adaptation.

By "slow" we mean that there is sufficient time to run batch identifica-
tion before the control system is modified. The use of slow adaptation is
anticipated for a large class of LSS missions which have quiescient
periods useful for "calibration". The methodology we have developed
provides a guaranteed level of performance given an "identified" model of
the system together with the model error between the system and the iden-
tified model, 1In fact, our methodology generates performance vs. model
error tables (to be stored in the computer) from which the control design
is determined strictly on the basis of model error and performance demand,
rather than trial and error., These results are summarized in our annual
report (ISI Report 43, 1984) and in Kosut and Lyons (1984).

The status of adaptive theory at the end of the first year effort is
summarized in Table 1-1. The maturity of adaptive control theory is com-
pared to that of linear control theory with respect to the impact of
modeling assumptions and modeling errors. Table 1-1 is primarily
applicable to linear finite dimensional systems. Adaptive theory is vir-
tually undeveloped either for » - dimensional linear systems or general

nonlinear systems,
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TABLE 1-1, STATUS OF THEORY#

MEDELING RESUMPTIBNS MODEL ING ERRORS

T ERTERNAL UNMODELED UNMODELED

R DISTURBANCES | BYNAMILS DISTURBANCES

PARAMITERS

SMALL, SLOWLY | KNOWN TYPE; | KNOWN UPPER | KNOWN UPPER

LINERR UARYING DLMIA- KNOUN PARR- BOUND OF BOUND OF MAL |
CONTROL TIONS FROM METERS (MRG. MRAGNITUDE vs.| vs. FREQ.
NOMINAL AND FREQ.) FREQUENLY
1

KNOUWIN TYPE; EMERGING * [EMERGING °
RDAPTIVE LARGE, POSSIBLY UNKNOLUN PARR-| TREORY THEORY
CONTROL RAPID CHANGES METERS (MAG.

AND FREQ).

# Jable is primarily epplicable to inear Tinite dimensions! systems. Theory 1 less
developed for o - dimensional systems end/or nonlineer systems i eoth cose.

* Primary resesrch sreas covered by current contract.

Second Year Results (1 June 1984 - 31 May 1985)

The second year effort continued with theoretical work on further
developing the local theory with particular regard to the fact that LSS
modes are uncertain, densely packed and very lightly damped. These
characteristics of LSS dynamics are among the primary difficulties faced
by practical identification/adaptation algorithms. A major task in this
effort was to investigate the properties of adaptive systems incorporating
algorithms with multi-rate (two time scale) structures, and persistent
excitation. These algorithms were studied under slow adaptation. This
made it easier to assure achievable specified performance levels despite
unmodeled dynamics and disturbances. The effect of speeding up the adap-
tation has been proposed for study in our current work under Contract
F49620-85-C-0094.
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New Results and Directions

i An important series of developments took place during this second

year which will have a positive effect for our present and future re-

3 search. Our initial efforts at developing a local stability theory have ;
just recently been further advanced by Riedle and Kokotovic (1984). Their Sy
! results indicate that by combining the averaging theory of Hale (1969) %hyquu

with the local stability theory of Kosut and Anderson (1983), a sharp
- stability-instability boundary can be obtained for the case of slow

adaptation/identification. Insofar as LSS technology is concerned this is ii&""
- a major breakthrough, because as mentioned before, slow A
‘ adaptation/identification is sufficient in many cases. This new insight L
made it very important to more thoroughly develop the theory during this
second year. A heuristic explanation of our local stability theory and
the method of averaging is provided in Section 2.1. A more detailed over-

view is contained in the summary paper by Kosut in Appendix B.

Collaborative Research Effort

An important point to be made, regarding this research, is that

- there is a great deal of collaborative effort involved among several re-
searchers who share a common interest in this field. 1In fact, quite soon uj AL

!. after the initial work on input-output stability theory of adaptive sys-
tems was published by Kosut and Friedlander (1982, 1985)%, other pockets
of research groups began extending these results in a variety of direc-
tions, e.g., Ortega, Praly, and Landau (1984), Riedle and Kokotovic

L. (1984), Kosut, Johnson, and Anderson (1983). It became apparent that
these researchers should get together for informal meetings. One was ar-
ranged by Landau at the University of Grenoble in July 1984 with Kosut,
Ortega, and Praly attending. A second was arranged by Kokotovic at
Montana State University in August 1984, with most of the above research-

ers attending.

* Supported under AFOSR contract F4920-81-C-0051.
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These small, rather intensely focused meetings, have proven to be a major
catalyst for advancing the research efforts in this field. A third meet-
ing, arranged by Kokotovic, occured in Nov. 1984, at the University of
Illinois, the purpose of which is to organize efforts on the further
development and use of the averaging theory of Hale (1969). A fourth

meeting took place in the summer of 1985,

Also during this period, Dr. Kosut received AFOSR approval to accept
an invitation from the Australian National University to work there as a
Visiting Scholar. He spent a one month period and worked in close col-
laboration with Professor Brian Anderson and his collegues. The results
are reported in Kosut, Anderson, and Mareels (1985) and included here as

Appendix D.

The purpose of describing all those meetings here, is to emphasize
the collaborative effort that has been involved in the development of this
theory, and also to indicate the degree of interest and excitement in the

adaptive control research community about this endeavor. Obviously, with-

out the continuing support from the various government agencies, e.g., s
AFOSR, NSF, etc., none of this would be possible, at least not at this A
pace. We are also pleased to report that another result of these col-

laborations is a forthcoming book by Kosut, Anderson, Kokotovic, et. al.,

on stability theory for adaptive systems (MIT Press, Spring 1986).

Other Related Research

This program provides for the development of theory which will work
in synergy with other related research activities both at Integrated
Systems, Inc., and at Stanford University, where Dr. Kosut has a position L
as Consulting Processor in the Department of Electrical Engineering. At AR
Integrated Systems, Inc., these related programs support development of
hardware architectures and associated hardware to provide practical adap-
tive controls for real DOD/NASA missions. One activity, with the Army
Munitions and Chemical Command (AMCCOM), requires development of program-
mable board level processors to implement adaptive gun turret pointing

controls. Control synthesis and simulation is followed directly

Sl
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by programming of the real-time processors, thus sharply reducing real-
time system development costs. Another activity is a more general
treatment of the AMCCOM problem where robust adaptive mechanizations for
complex systems such as LSS will be implementable in a real-time system
level hardware architecture., This program was funded under the AFOSR/SBIR

office.

At Stanford University, Dr. Kosut meets regularly with Professor
G.F. Franklin, and several students, all of whom are working towards their
Ph.D. in the area of adaptive control. The students interests vary from
LSS to robotics to theory. Two of the students have been working on im-
plementing algorithms for use on experimental flexible systems in the
Guidance and Control Laboratory in the Department of Aeronautics and
Astronautics under the direction of Professor R.H. Cannon. Their results,
both positive and negative, have provided a strong impetus in the direc-

tion of our research program with AFOSR.

1.2 RESEARCH OBJECTIVES

The study being reported on here, which is part of our ongoing re-
search, will extend adaptive theory and its application to LSS problems in

several directions. These include the following:

(1) Theoretical development - The present emphasis is to merge
our present local adaptive theory with the method of averaging
of Hale (1969). First attempts involved slow adaptation, since
this covers many LSS situations. Later on we will examine fast
adaptation. The theory developed here provides for:
(a) estimates of robustness, i.e., stability margins vs. per- RO
formance bounds; (b) estimates of regions of attraction and RS
rates of parameter convergence to these regions. Later on, ex- .
tensions of the present linear finite dimensional adaptive RORCIADS
theory will include nonlinear and infinite dimensional plants : ’
and controller structures; and (d) extensions to decentralized
systems,

(2) Parameter adaptive algorithms - Assess the behavior of dif-
ferent algorithms, including: gradient, recursive least
squares, normalized least mean squares, and nonlinear observer
(e.g., Extended Kalman Filter).
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(3) Parametric models - Assess the impact of model choices. 1In
particular, the effect of explicit and implicit model choices.
An explicit model, for example, is a transfer function whose
coefficients are all unknown. 1In an implicit model transfer
function, the coefficients would be functions of some other
parameters. Implicit models usually arise from physical or ex-
perimental ground data, whereas explicit models are selected
for analytical convenience.

(4) Adaptive nonlinear control - Although our early effort is to
study adaptive linear control, there are many LSS situations
where the control is nonlinear.

Consider, for example, Figure 1-1 which depicts two LSS control modes:
(1) vibration suppression, and (2) tracking/slewing. In the vibration
suppression situation a "slow" adaptive algorithm (sequential
identification/adaptation) may be sufficient, whereas in the tracking/
slewing case a "rapid" algorithm (parallel identification/adaptation) may
be necessary. These two possibilities stretch adaptive theory at both

ends, particularly with regard to convergence rate requirements.

Note also that the two adaptive controllers in Figure 1-1 involve
not only different convergence rate requirements, but also involve dif-
ferent controller structures, i.e., linear for vibration suppression and

nolinear for tracking/slewing.

Clearly many combinations of models and control structures are pos-—
sitlie, and 3t this point it is not possible to enumerate all that may be
relevant. However, by examining a few sensible choices, such as those
compatible with typical LSS objectives, the ensuing theoretical develop-

ment will indicate the necessary modifications required in each case.

le
h
@
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1.3 MOTIVATION AND LONG-RANGE GOALS

The issues of performance sensitivity, robustness, and achievement ﬁ;}-ﬁ"
of very high performance with low-order controllers can be effectively ad-
dressed using adaptive algorithms. The need to identify modal fre-
quencies, for example, in high-performance disturbance rejection systems
has been shown in ACOSS (1981) and VCOSS (1982). The deployment of high-

performance optical or RF systems may require on-line identification of
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;{ critical modal parameters before full control authority can be exercised. '”.;
e Parameter sensitivity, manifested by performance degradation or loss of :‘fﬂ
stability (poor robustness) may be effectively reduced by adaptive feed- ’!

n

[
FL back mechanizations. Reducing the effects of on-board disturbance sources
Y

o
. .I

on the system performance (disturbance rejection) is particularly impor-

.

tant for planned Air Force missions., For these cases, adaptive control
mechanizations are needed to produce the three-to-five orders-of-magnitude o 5

reductions in line-of-sight jitter required by the mission.

Research is essential to identify the performance limitations of

adaptive strategies for LSS control both from theoretical and hardware =
mechanization viewpoints., The long range goal of this proposed research .
program is to establish guidelines for selecting the appropriate strategy,
to evaluate performance improvements over fixed-gain mechanizations, and
to examine the architecture necessary to produce a practical hardware
realization. The initial thrust, however, is to continue to build a
strong theoretical foundation without losing sight of the practical imple-

mentation issues. e

Impact on Other Aerospace Applications "

The adaptive theory being developed for LSS control will spillover
to other aerospace applications. Table 1-2 shows a comparison of aero- fg SHARG
space system adaptive control applications. The LSS control problems

clearly invclve aspects of the other disciplines. ,;-""

1.4 REPORT OUTLINE

In the next section we summarize the technical issues involved in e
the adaptive control of large space structures, Various detailed techni-

cal papers and reports are included as supporting Appendices.
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TABLE 1-2.

Froblem
Cnaracteristics

ROTOKCHAF] VIBKATION

N

UPPRESSTON

LARGE STHACE TR U
POINTING CONTHOI

Nature of
Adaptive Require-
ment

® Fing narrowband

mode!l for different
flight and operat-

ing conditions, for
different flexibvle

rotorcraflt

A COMPARISON OF AEROSPACE SYSTEM
ADAPTIVE CONTROL APPLICATIONS

ATHCHAR Y WING/STORY
FLUTTEY SUPPRESSTON

e Ground Testing

impossible; many
mode model that
changes with toem=
perature, aging,
and confipuration

Level 1

® Adjust to differ-
ing flight condi-
tions

Level 2

® Adapt to sudden
model instabili-
ties from un-
analyzed store
combinations

Key apriori
information

e Disturbance fre-

quency

Sufficient time to
partition and iden-
tify model bandwidth

e Timing of when
stores are dropped

Special Identi-
fication Aspects

Near singular disturb-

ance that does not
enter through the
control

Multiple narrow and
wideband disturb-
ances, large maneu-
vering loads.

Quiet periods avail-
able for long ID runs
Persistent excita-
tion required

e Very short time to
identify

e Model mismatch and
hence model form
are very impor-
tant

® Physical Model
tuning parameters
are very helpful

Special Control
Problem Aspects

Inherently MIMO
Often non-minimum
phase

Autotuning capabdbi-
lity is essentlal

Inherently MIMO

Need very high dis-
turbance rejection
gain

Controller bandwidth
i{s packed with modes
Off-1line robustness
analysis and design
are helpful

® Stability is the
key problem

® Some off-line

analysis of a-
priori models and
stability bound-
aries essential
to guarantee
stability

Adaptive
Mechanization
Aspects

Frequency-shaped
time domain model
concentrates con-
troller energy
Notch filter re-
duces parameter
estimation load
Hysteresis adaptive
on/of f logic by-
passes persistent
excitation problems

Controller update
rate can be slower
than basic sampling
and 1D rate.
Decentralized con-
trol may be valuable
due to model com-
plexity, system re-
liability, computa-
tional requirements
and step-wise deploy-
ment

e High computational

load can benefit
from parallel
architectures

® Persistent excita-

tion is a problem
=~ tuning on/of
excitation, freez-
ing adaptation,
and co-variance
modification are
potential solu-
tion
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SECTION 2
“ PROBLEM FORMULATION AND TECHNICAL DISCUSSION
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The development of a design methodology for adaptive control of LSS
involves many different issues. In this section we present a selective

discussion of the theoretical and practical issues that seem most

k !
L}

l.'"".' "
DAY

relevant., A more in depth discussion of the overall LSS control design

problem is presented in Appendix C. The discussions there cover various

types of control design approaches, including both robust (non-adaptive)

- as well as adaptive. The major points, however, are summarized in this
' section,

2.1 LSS CONTROL PROBLEM SETTING

Control Design Objectives

Problems associated with vibration control and accurate pointing of
DEW/LSS systems typically involve a combination of the following control-
performance objectives.

1 (1) modal damping augmentation to enhance transient settling or im-
a prove quasi-static vibration propagation behavior,

(2) stabilization of the attitude control system,

(3) eigenvector modification to reject narrow band steady-state dis-
- turbances, and L..,.,

(4) maneuver load management to minimize structural loads or modal
excitation (transient or steady-state).

Modeling

The basis for selecting a control strategy must include an adequate

description of the relevant structural dynamics together with a descrip-

tion of how system performance is to be measured. Initially,
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:}; continuum models were suggested as the basis for proper system design C:“:‘
:;; since discretization of the model could be postponed or eliminated, Hughs g;}""
and Skelton, 1981. Unfortunately, practical spacecraft configurations do " &ﬂ?&
:E not present simple boundary conditions or simple shapes, hence, p.d.e., ;;EiE:
1:& representations are nearly impossible to write, However, such continum Gégésﬁ
‘: models have provided useful insight into appropriate discrete representa- ﬂiﬁh
tions. Finite element models can provide adequate fidelity, at least over Q:Q?T;
the frequency range needed for the control design model, and are supported ; EE?;
. with sophisticated software tools easily adapted to the needs of control :[:
. design, ACOSS (1981). <
Two Level Control Architecture
”f; The basic control architectures can readily be combined into a two-
;il level control system architecture consisting of a wide-band, low-authority
f“ control (LAC) and a narrow-band, high-authority control (HAC), see Figure
;: 2-1. The LAC introduces low damping (2-10%) in a wide range of modes for
ri maximum robustness. HAC provides high damping and mode shape adjustment
L in selected modes to meet performance requirement.
< LAC synthesis principally involves passivity methods and rate feed-
: back mechanizations, usually with co-located actuators and sensors, Aubrun
(1980), Iwens, et. al (1980).
. HAC synthesis, in addressing performance goals associated with
- - dynamic wavefront and line-of-sight error suppression, requires high modal S
i damping and mode shape changes. Hence, the HAC is dependent on accurate -_f
f?- narrow-band models. For such requirement, it is essential that control {;fﬂ
35 design techniques manage both dependence on model fidelity and system gain 1:;;
- in regions where model fidelity is poor. This has generally been ac- \.5532
’;i complished using fixed-gain robust control theory, e.g., Kosut, Salzwedel, lt'ﬁﬁSE
\ and Emami (1983). With this architecture it is likely that only the HAC . \E\
- would be tuned by an adaptive system since the LAC is inherently robust. N




0“9y

Structural
bnamse s

Sensor

Actuators —N

Colucated
Kate
Dampaing

Structurat
DeTlection

Kates

Lo,

f vt
Non-Culocated
High-Perfurmance ‘
Control

Adapt ve
Control

Figure 2-1. Features of Control Architecture

Adaptive Techniques

In general, uncertainties in both disturbance spectra and system
dynamical characteristics limit the performance obtainable with fixed
gain, fixed order controls, e.g., HAC system. The use of an adaptive con-
trol mechanization where disturbance and/or plant dynamics are identified
prior to or during control, gives system designers more options for mini-

mizing the risk in achieving performance benchmarks.

In the case of LSS/DEW systems, the performance levels are extremely
high. Hence, it is necessary that disturbance and plant models are ac-
curately known. Since model data obtained from ground testing is unlikely
to sufficiently match the actual on-orbit system, it follows that on-line

procedures are needed for identification and control.

The generic properties of closed-loop system performance vs. struc-

tural parameter variations are depicted in Figure 2-2.
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(Generic Properties)

Assessment of Adaptive Techniques

Available Algorithms

Many adaptive control and identification algorithms exist for lumped
parameter, finite-dimensional linear systems, e.g., Goodwin and Sin
(1984); Ljung and Soderstrom (1983). Most available algorithms can be
cast into the form shown in Figure 2-3. For example, a user could select
from the following catalog of model forms, control design procedures, and

parameter adaptive mechanisms:

Model Control Design Adaptation

ARMAX Model Reference Gradient

State-Space Self-Tuning Recursive Least Squares
Pole-Placement Recursive Max Likelihood

Extended Kalman Filter
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These schemes also differ in terms of update rates. Typically the outer
control loop is at a fast rate, whereas the parameters from identification
are updated more slowly., Adaptive schemes are generally referred to as

recursive if the identification rate is a fixed multiple of the controller

rate, If identification is used for occasional tuning or calibration, the

J
\
! l! scheme is referred to here as adaptive calibration.

-{; Consider, for example, Figure 1-1, which depicts two LSS/DEW control

modes: (1) vibration suppression, and (2) tracking/slewing. In the vibra-
tion suppression situation a "slow" adaptive algorithm (sequential
identification/adaptation) may be sufficient, whereas in the tracking/
slewing case a "rapid" algorithm (parallel identification/adaptation) may
be necessary. These two possibilities stretch adaptive theory at both

ends, particularly with regard to convergence rate requirements. % o
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Note also that the two adaptive controllers in Figure 1-1 involve not
only different convergence rate requirements, but also involve different
l controller structures, i.e.,, linear for vibration suppression and non-

linear for tracking/slewing.

N Direct application of available algorithms to the LSS system is

l restricted because of a lack of theory regarding the system's robustness
to model error. In addition, it is not known how limitations imposed by a
decentralized for pre-selected control architecture will effect achievable

performance. Those two issues will now be discussed.

Robustness to Model Error

L The use of available identification and adaptive algorithms, which

| are based on finite-dimensional, linear models, on LSS systems introduces
a troublesome source of model error, i.e., high frequency unmodeled struc-

N tural modes, of which there are theoretically an infinite number. Other

i sources of model error include uncertain actuator/sensor dynamics and

neglected nonlinearities in joints and damping mechanisms.

Although available theory can handle a finite number of parameter er-
. rors, it cannot deal effectively with other types of model error,
g specifically, the unmodeled high frequency structural modes and dynamics.
It was shown in simulations by Rohrs et al. (1981, 1982) that unmodeled
high frequency dynamics, together with a small high frequency noise - both
well outside the controller bandwidth could cause a parameter drift which
may eventually destabilize the system. This drift phenomena was also
R reported to occur in on-site process control applications where it was

necessary to re-set the parameters every so often (Wittenmark and Astrom,

TR

1982). Simulation studies involving LSS exhibited similar problems where
the parameters would not converge unless the initial parameter values
where close to the unknown tuned values (Sundararajan and Montgomery,
1982).
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Robustness to model error is more well understood in the context of
nonadaptive linear control theory, e.g., Doyle and Stein (1681); Zames and
Francis (1983); Chen and Desoer (1982). The common theoretical basis for
these robustness theories is the input-output view of feedback systems
(Zames, 1966; Descer and Vidyasagar, 1975, Safonov, 1980). Another view-
point on robustness, which follows more along the lines of Liapunov
stability theory, characterizes the solutions of perturbed nonlinear ordi-
nary differential equations, e.g., LaSalle and Lefschetz (1961), Hale
(1969).

A main intent of our research program has been to merge the input-
output view and the Liapunov stability view with adaptive mechanizations
to develop a theory of robust adaptive control. Some of the groundwork
has already been accomplished (Kosut, et, al,, 1982-1985) and as such, we
are now in a good position to address those issues as they related to LSS

systems.

Decentralized Adaptive Control

Limitations on control authority and the information pattern are the
main features of the decentralized control problem. The general structure
of such a decentralized control system is illustrated in Figure 2-4. The

dashed lines indicate a partial information exchange, e.g., the local con-

troller receives reference commands (or discretes) from a higher level
control (the coordinator) and/or information from other local controllers

in the form of an "aggregated" state.
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Exchange of Information

For LSS/DEW systems, decentralization normally results because a

natural separation is physically or geographically present between func- -

tional components of the system. For example, some decompositions result s f)ﬁﬁ?
from spatial differences: weak dynamic interaction effects can be easily . -?;?;
iZentified. A decomposition also occurs from temporal differences; :’ T

phenomena occurring at different time-scales, e.g., a separation between

fast and slow modes or between low frenuency and high frequency effects, -

For example, groups of the modes can be separately controlled by separate
controllers which do not destabilize each other. Specific combinations of
weak dynamic coupling and separation of slow and fast modes can often be

identified, e.g., Figure 2-5. -

A number of very useful results are available for non-adaptive
decentralized systems, e.g., Vidyasagar (1981), Siljak (1978). Those
results show how total system properties are dependent on subsystem and

interconnection properties,

20 A “.’,'.‘
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(1984). There is, however, a similarity in robustness theory and the

theory of decentralized control which we hope to explore and exploit.

_I Research Objectives

The dream of adaptive control researchers
a "global" stability theory, i.e., performance
of initial conditions and disturbance spectra.

tained, but as mentioned, the available theory

dimensional parameterization exists such that an exact matching condition
is obtained (see e.g. Ljung and Soderstrom, 1983; Goodwin and Sin, 1984).

Such a stringent requirement is impossible to obtain in an LSS system,

exact parameterization (see Section 1).

| (
| t
d | R |

has always been to develop
is guaranteed independent
Such results have been ob-

requires that a finite

Much less is known about adaptive decentralized control, although

there are some promising preliminary results available, e.g., Ioannou

principally because there are many sources of model error which defy an
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Because of these difficulties, recent research efforts have focused
on relaxing the requirements on adaptive theor: by emphasizing local
rather than global results. The distinction between global and local is
that in local theory there are restrictions on the magnitudes and fre-
quency content of the inputs as well as the initial parameter values. In
global theory there are no such restrictions. Thus, the local theory is
more practical and provides robustness to model error by utilizing a
priori information that is available. In addition, restrictions imposed
by a decentralized architecture can, in principal, also be accounted by

the form of the theory.

The basic ideas for local stability rest on two fundamental stability
theories. One is the small gain theory of Zames (1966), and the other is
the method of averaging as described by Hale (1969). These theories have
different origins and to some extent have application in different regimes
for nonlinear systems. Small gain theory determines the stability of
trajectories. With regard to LSS problems, small gain theory is generally
applicable to "fast" recursive adaptive control; averaging theory is ap-
plicable to "slow" identification and then control, i.e., adaptive
calibration. One can envision small gain theory as providing a macrosco-
pic view while averaging provides a microscopic view. Our intention is to
merge these as much as possible and thus, broaden the application of each

approach, particularly for the LSS system. This is not without precedent.

Small gain theory was applied originally to continuous-time adaptive
systems by Kosut and Friedlander (1982, 1985) and more recently extended
by Kosut and Johnson (1984), and Kosut and Anderson (1984). The method of
averaging was applied to continuous-time adaptive systems with almost pe-
riodic inputs for the first time by Riedle and Kokotovic (1984) and Astrom
(1984), Extensions to more general input classes have been obtained by
Kosut, Anderson, and Mareels (1985). The averaging theory has also been
able to accurately predict the drift phenomena observed by Rohrs, et al.
(1982).
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Although small gain results apply equally to continuous or discrete-
time systems, the averaging theory is underdeveloped for the discrete-
time case, A major proposed early effort, therefore, is to develop a
discrete-time averaging theory useful for sample-data adaptive systems.
This will provide - foundation for later efforts in sampled-data adaptive

systems with multi-rate and decentralized processors.

2.2 SUMMARY OF UNDERLYING THEORY

In this section we present a heuristic discussion which summarizes
the underlying theory. As mentioned, the basic ideas rest on two fun-
damental theories: 1) is the small gain theory of Zames (1966), and 2)

the method of averaging as described by Hale (1969),

To heuristically describe our approach, consider the feedback system

in Figure 2-6, below where G1 and G2 represent operators.

Figure 2-6. Feedback System
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é% Small gain theory asserts that if ¢
%ﬁ I
‘ gt'
Gain (G,) . Gain (G,) < 1 (1)
E} then the feedback system is stable. 1In robustness theory, the feedback
- loop is arranged so that 62 represents all of the nominally zero uncer- !5
;; tain elements of the system. The operator, 01, referred to as a return-
- difference operator, is everything else, It is always possible to arrange }“' .

a feedback loop this way (Safonov, 1978). Thus, G1, is dependent on the

presumed uncertainty location. Hence, stability margin is the maximum al- USSR
lowable uncertainty which guarantees stability, i.e., o fﬁ}{%
Stability Margin = 1/Gain(G1) (2)

For linear-time-invariant systems it is not difficult to calculate
Gain (G1); in fact, this can be accomplished in the frequency-domain.
SRS These results parallel Bode analysis, and offer the engineer a very useful
design tool. At the present time, however, no such tool exists for adap-
- tive systems, The main difficulty is that in the adaptive case G1 is
nonlinear. Nonetheless, certain types of nonlinearities in G1 can result
in a frequency-domain test, e.g., Popov criterion, hyperstability con-

cepts, positivity, etec. These latter results follow from passivity

theorems, and interestingly enough, this is the main tool in current adap-
tive theoi'y for proving stability. Unfortunately, however, by proceeding
. this way, it can be shown (Kosut, 1982a) that the resulting stability mar-

gins are very small and are easily violated in any realistic enviromment.

@
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The approach we are proposing here is to by-pass the conservative

passivity conditions and rearrange the adaptive system so that the two
operators are intrinsically small. This requires introducing the notion
of a tuned controller (Kosut, 1985) and a tuned set model representation
of the plant, which accounts for uncertainty. As a result of this trans-
formation we can introduce averaging. Hence, a less conservative calcula-

tion is

Stability Margin = 1/Avg Gain (G1) (3)

The averaged gain is significantly smaller than the usual gain calcula-
tion, and thus, produces a much larger stability margin, i.e., greater

performance,

In Section 2.3 we outline this approach. Further details using small
gain theory can be found in Kosut and Anderson (1984) with averaging
results in Reidle and Kokotovic (1984) and in Kosut, Anderson, and Mareels
(1985). Appendix B contains a detailed report summarizing the applica-

tion of averaging methods to adaptive systems.

2.3 ADAPTIVE CONTROL THEORY

In this section we will discuss issues and new directions in aaaptive
control theory. To illustrate the ideas we will consider a continuous-time
generic representation for control or identification of a scalar (single-
input-single-output) plant. In all cases the comments apply equally to

discrete-time, as well as multivariable systems. The generic adaptive

system, shown in Figure 2-7, is described by,
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z =z, - Dx 0 = vze (4)

where 0(t) = 6(t) -0, € RP is the parameter error vector; 6(t) is the
current parameter vector estimate; O, is a constant tuned parameter vector
setting; z(t) ¢ RP is the regressor vector; x(t) € R" is the system state
consisting of plant and filter states; e(t) is the error signal; and Y > 0
is the adaptive gain. The signals e,(t) and z,(t), referred to as the
tuned error and tuned regressor, respectively, are outputs from the ideal
tuned system where 0(t) = 0, i.e., é(t) = 0,.

<+ e -] .
Se !? N % - vz 'y X = AX 4 bz'e'—-:
z
T, %
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Figure 2-7. Generic Adaptive System
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Appendix (A) shows how the nonlinear system (4) arises in the analysis of
adaptive control or identification. More detail on the development of
(2.1) can be found in Kosut and Friedlander (1982, 1985), and Kosut and
Johnson (1984),

Global Stability Theory

The assumptions required to insure global stability and convergence
of (2.1) are quite strict, e.g., Narendra, Lin, and Valavani (1980), Good-

win, Ramadje, and Caines (1980). These assumptions include:
(A1) e, (t) -> 0 as t -> =
(A2) z(t) persistently exciting (PE)
(A3) o'(sI-A) 'b is strictly positive real (SPR)

In all practical cases these assumptions are violated. Assumption (A1)
implies that there are no continually acting unmodeled noises or distur-
bances. Assumption (A2) can not be guaranteed unless (A1) holds. The SPR
assumption in (A3) is the most restrictive, since it requires a priori
knowledge of model order, relative degree, and high frequency gain, all of
which are not available or infeasible to obtain. Moreover, these require-
ments make no sense at all for an LSS whose order is theoretically
infinite. Unfortunately, even small deviations from these assumptions can
eritically disrupt an adaptive system, e.g., Rohrs et al., (1981, 1982),
Reidle, and Kokotovic (1984).

Example of Adaptive Calibration

The basic problem with control based on identified modeling is that
without a measure of model error it is very easy to destabilize the system

- particularly when the goal is high performance - as in an SBL. Adaptive
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calibration is an approach which incorporates a measure of model error

with robust control design in an iterative way so that identification is :siii

‘aF

performed only where it is needed. One proposed adaptive calibration sys-

tem is shown in Figure 2-8, with test results, using the CSDL #2 model, , Ti?f.

2
L
-
-

0
Py

shown in Figure 2-9. The adaptive calibration procedure involves the fol- ’ e

v
.
= _A
e

lowing steps:
Step 1: The model M(s) is a 10-mode model which has been obtained
from I/0 data.

Step 2: Estimate §(w) = model error vs. frequency using FFT. This
is dashed curve in Figure 2-9(a).

Step 3: Using the identified model M(s) and the model error &, syn-
thesize a robust control (e.g., Appendix C).

Step 4-5: Calculate §_.,(w) - stability margin (or &§ (w) - perfor- ﬁ';514?

mance margi%%. This is.dark curve in Finge 2-9(a). ~ g
Compare to medel error &§(w). Both plotted in Figure e
2-9(a). If 8(w)<8_(w) go to Step 7 and implement control- {{'ﬁf
ler, Otherwise, ggmto Step 6. . ff
Step 6: Modify filter windows, number of parameters, or input R
spectrum and then repeat Step 1 to obtain new ID model. -1

Figure 2-9(b) shows result of ID after one mode is added in
frequency domain region where test fails,

Step T: Implement controller,

These preliminary results are quite promising. A major portion of .Q —
our initial research effort has been to understand the nature of such

schemes at a fundamental level.
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Local Stability Theory

l'i Boundedness Results (Fast Adaptation - High Gain)

S With regard to practical adaptive design techniques, the need for the

SPR condition - hence, the restrictive modeling assumptions--can be

Y
! -! eliminated by considering conditions for local stability rather than

global stability, see e.g., Kosut and Anderson (1984). The term 'local’
refers to the use of known restrictions on the system external inputs, un-
certain parameters, and unmodeled dynamics., For example, since persistent ;93-“3
I‘ﬂ? excitation induces exponential stability (Anderson, 1977), and since an
- exponentially stable system is inherently robust, it is logical to expect
that unmodeled dynamics could be robustly tolerated. Other mechanisms--

R including persistent excitation--can ensure stability of the adaptive

g ) system, without SPR, provided certain other restrictions are enforced,
e.g., slowly varying signals, approximate SPR, gain retardation, and

restricted signal magnitudes and bandwidths (Ioannou and Kokotovic, 1982-

j" ; . '. -
i i' 1984; Kosut, 1984). It is our intention to utilize these theoretical S

results, whenever appropriate, in the adaptive LSS study, as this local e

i
IR

CERTER SR
’

theory emerges. h--l;

:- A
P . Stability Results (Slow Adaptation-Low Gain)
& The above local theory, which proceeds from the Small Gain Theory of

E Zames (1966), and Desoer and Vidyasager (1975) can be considered as giving

P . conditions for boundedness (in the input-output sense) rather than

} stability (in the Liapunov sense). The recent work of Reidle and

Kokotoviec (1984) utilizes the averaging theory of Hale (1969) to obtain a

sharp stability - instability boundary for slow adaptation, i.e., when Y

in (2.1) is sufficiently small. To apply the averaging theory requires
transforming (2.1) to the following form:

MR AT A

8 = Y £(t,8,£,Y) (5)

3
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£ = AL + ¥g (t,8,6,Y)

where f and g are time-varying nonlinear functions. As Y --> 0 the

stability of (2.2) is identical to the stability of the "averaged" system

8 = Y (8)
(6)
E = AL
where
;T
£,(0) = 1lim = J f(t,08,0,0) dt
T -> o 0
(7

Without going into the details here, it can be shown that there exists a
sufficiently small positive Y such that (6) is stable -- and hence, (5) is
stable - if and only if a persistent-excitation type of condition is

saiisfied. The important results here may be summarized as follows:

(1) For sufficiently slow adaptation, there exists a sharp stability
- instability boundary.

(2) The conditions do not require SPR, but do require persistent
excitation,

Much work has to be done to further develop this theory in general and
to tie it together with the boundedness results by Kosut, et. al. For LSS
in particular it is necessary to extend the theory to discrete-time, = -
dimensional and nonlinear systems. Note, however, that the form of the sys-

tem (2.2) required by the averaging theory can be nonlinear.
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Extensions to Diascrete-Time

An important step in our research is to develop the averaging theory
of Hale (1969) to discrete-time adaptive systems. There appears to be no
theory available at the present time, The obvious extension is to consider

the discrete-time system analagous to (5), i.e.,

46 = Yf(t,8,E,Y)
(8)
Ag = Af + Yg(t,8,E,Y)

where A 1is the finite-difference operator (Ax)(t) = x(t+1)-x(t) and ¢t
takes on discrete-values t = (1, 1, 2, ... ). One can make the conjecture
that the discrete-time averaging theory states that as Y --> 0d, the
stability of (2.2)' is identical to the stability of the averaged system

A8 = Yf_(8)
(9
AE = Ag
where
, T
£,(8) = lim - 1 f(t,8,0,0) (10)
T -> o t=0

We will conduct research to determine if this conjecture is true, or what

the necessary modifications involve.

v ey
D .
KA KA

1 B
.
l

r s
A,
v .

¥

A...
£ AV
iR
",

R




2.4 ADAPTIVE CONTROL STRUCTURES

..

In this section we explore variations of (4) arising from different

¢« "
PR

models, control structure definitions, and parameter update laws., These -

variations will be useful in different LSS control applications.

Structure of the Parameter Adaptive Algorithm RN

The adaptive parameter update algorithm in (4), © = vze, although use-

ful for analysis, is too simple in practical cases. The more general form:

0= ¥ hit,z,e) (11)

can arise from normalization,

| ht,z,e) = ze/(1 + |z]?) (12) X -
RN
LR
RN
RTINS
least squares considerations, Tl

1

h(t,z,e) = R(t) | ze/(1 + 2' R(t) " 2)

(13)

R(t) = z(t) z(t)'

dead-zones,

34
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ze, |e|
h(t’z'e) = o Iel

@
3 3

(1)
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or combinations of all of the above. These all have their use and charac-
teristics properties [see Goodwin and Sin (1984) or Ljung and Sodestrom
(1983) for a survey]. Which combination of these or other structures is

useful for LSS n:eds to be determined.

Multi-Rate Adaptive Control

Multi-rate adaptive schemes (or two-times scale schemes) refers to an
adaptive structure where the adaptive control parameters are updated more
slowly than the basic control sampling rate. This scheme allows a period of
plant identification to be followed by a change in control parameters,
Allowing more time in the identification phase also allows for more reliable
pass-fail tests. For example, we can perform a fit-error test after para-
meter identification on the old data as well as estimating its information
content. If either test fails then the control gains are not updated. If }\'5
they both pass then the gains can be updated in the direction of maximum -}3
information. We can also include a robustness test based on a priori (or ;E__;"
new) model error bounds. Ideas such as these have been considered for LSS ‘

applications by Sundararajan and Montgomery (1982).

Hybrid Adaptive Control

If, in the multi-rate adaptive structure, the basic control sampling
rate becomes continuous, then the structure is referred to as a "hybrid"

Sstructure: the feedback is continuous but is updated at discrete times. \:;:{1
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Such a scheme reduces intersample ripple and also tends to increase band-

width and noise attenuation. These structures may prove quite practical for

the LSS.

Linear Finite-Dimensional Models

The modeling assumptions influence the adaptive control structure,
Assume that the plant to be controlled can be accurately represented by a

finite-dimensional model of the form

(15)

. \
X Amx + Bm (u, y)

where u is the input, y is the output, Amis a stable nxn matrix, and (Am,Bm)
is controllable. (see e.g. ch. 2, Kailath, 1980). Under these conditions,

the transfer function Pm(s,e) from u into y is:

(16)

This type of model is referred to as an explicit parametric model. The ad-
vantage of this representation is that the parameter vector 6 appears
linearly in (15). 1In Appendix A we discuss how this form is compatible with

equation error and output error identification algorithms. Moreover, these

AL RS G P P PPy

algorithms can be transformed to the form of (U) and the theory discussed
earlier can be applied. Also, in adaptive rontrol, the linear relation be-
tween y and 8 in (15) simplifies the transformation from model parameter

estimates 8 to control parameters, i.e., k = f(8).
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There are many cases where the explicit model (15), although analyti-
_ cally tractable, is oblivious to useful information obtained from a physical
is analysis., Consider the implicit linear modal,
) = '
. y = cla) X
In (17
Xp = A(a)xm + b(a)u
where A(a), b(a), c(a) are nonlinearly dependent on the parameter vector
! -~ a € Q, where Q is the parameter space, a subset of Rk. This model (2.9)
. retains the physical meaning of the parameters, e.g., in an LSS the elements
; ‘ with a can consist of equivalent masses, spring constants, and dampers.
F . There will be far fewer of these parameters than there are coefficients in
? the equivalent transfer function, i.e., the transfer function Pm(s,a) from u

into y for (17) is:

i i b (@s™ !« L e b (a)

Pm(S.a) = (18)

n-1

n
s+ a1(a)s oo, * an(a)

S It is clear that the parametric model of (18) can be made identical to (15)

simply by equating each coefficient i.e., 8, = a1(a), 92

- Since the model (16) is linear in O whereas (18) is nonlinear in a, there is

= a2(a), and so on,

a great difference in the identification schemes. For (18) there are fewer

parameters to be identified, but several nonlinear relations. For (16},
there are many more parameters to be identified but all enter linearly into

' the model. In LSS modeling it may be prudent to examine the effect of using

; . implicit parametric models, because of the reduced number of parameters to

f ‘ be identified. This type of model, however, leads to more complicated forms
L than (4) and involves a nonlinear observer. One such scheme using an EKF is
Q“.~_ discussed next.
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Identification using EKF

The implicit parametric linear model (18) is compatible with an iden- = TR,
tifier based on the extended Kalman filter (EKF). The EKF parameter . Ejfﬁﬁ
estimator has the form: < Sﬂf;}

RN’
¥
PN

2
[}
ANV

)

ka(&)(y - c(@)'x)
(19) Lo
A(a)% + b(d)u + kx(&)(y - c(@)'x) SRR

e
1]

where the gain ka(a) and kx(&) are the Kalman filter gains obtained by
linearizing (17) about the current estimate %. Although EKF has been exten-
sively studied (e.g., Ljung and Soderstrom, 1983) there still remains no
concrete proof of guaranteed convergence for identification and no proof of
stability in the adaptive case, i.e., when & is used to generate a control
law. In as much as explicit parametric models may better represent the LSS,
we Will develop the theory in this area. There have been some attempts in
this direction by Safonov and Athans (1978) and Vidyasagar (1980). 1In this
latter work it is assumed that certain signals are bounded in order to prove
convergence, In the adaptive case this assumption needs to be proved first,
because the signals that need to be bounded are inside the adaptive loop,
and hence, dependent on the parameter estimator. The approach we take
is to apply the averaging theory of Hale (1969) by transforming the EKF

based adaptive system to the form of (5).

Infinite-Dimensional Systems

Systems of the form (4) not only presume a linear finite dimensional
plant but also a linear finite-dimensional controller. Extending the theory o

to the use of infinite dimensional plant and finite-dimensional controller
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may not prove to be too difficult, e.g., Kosut and Friedlander (1982).
However, the case for a distributed parameter controller (DPC), which is
perhaps more realistic for LSS, is more difficult. What is involved here is
adjusting a few parameters in the DPC from discrete spatial-temporal

measurements. This is certainly an area for basic research.

Nonlinear Control Structures

During tracking and slewing the control can be nonlinear, involving
switching curves (time-optimal) and actuator saturations. Adaptive schemes
here must be rapid (high gain) and must account for nonlinearities. Domi-
nant kinematic or structural nonlinearities will also engender nonlinear

control structures.

Lattice Filters for Adaptive Control

The uncertainty in the number of modes to be selected for adequate
control of LSS raises some special difficulties. Conventional adaptive con-
trol schemes involve controller structures of fixed order. 1In the LSS
context it seems necessary to adapt the controller order as well as its
parameters. The lattice structure is especially well suited for variable

order modeling and control as was discussed in Friedlander (1982),

Sundararajan and Montgomery (1982).

The theoretical development of lattice filters for control purposes is _
only at a preliminary stage of development, Its applications to practical ;l“ﬁ’
control situations have been very limited. A number of issues need to be -
resolved before the potential of lattice filters can be fully realized, '

including:

(1) The development of order-recursive lattice models for plants

with both poles and zeros. The work of Sundararajan and ;;?7?
Montgomery (1982) was limited to the all pole case. It is ex- N
pected that pole-zero models will provide better fit to the LSS A
problem., Some work has been done in this area (Friedlander, :{f;i
1982) but questions remain regarding the simultaneous determina- St
tion of the orders of the poles and the zeros, —
‘.:\.:';.
.'_,\._'.:
RASAS
AASKS
BOAY
.:_\:‘\
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(ii) The development of direct lattice controllers. The main appli-
cation of lattice filters so far has been in the area of system
identification. The identified model can then be used to design
a conventional controller. It is possible, however, to use a
controller implemented in lattice structure and adjust its para-
meters directly, based on the observed data. This leads to an
adaptive controller structure in which both the gains and the
order are being adjusted.

(iii) Development of a prediction error lattice filter. The current
versions of the adaptive lattice are of the residual type (i.e.,
the predictor coefficients depend on current as well as past
data. In the prediction error version they depend on past data
only). The control problem is naturally related to the predic-
tion error form. This development is a straightforward exten-
sion of available results.

Finally, it is necessary to test some candidate lattice algorithms on
real and simulated data to gain better insight into their properties when

applied to very high order plants.
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APPENDIX A
DERIVATION OF GENERIC ADAPTIVE SYSTEM

In this section we show how the nonlinear system (see Figure 2.1)

X =~ Ax + Bz'®

8 = Yze

is representative of a large class of adaptive control and identification
systems. In (A.1), e(t) and e,(t) are scalars, x(t) is an n-vector, 6(t)
and z(t) are p~vectors, A, b, ¢, and D are constant matrices or vectors of
appropriate dimensions, and Y is a positive constant. A more thorough dis-
cussion on the derivation of (A.1) can be found in Kosut and Friedlander
(1982, 1985), or Kosut and Johnson (1984).

Adaptive Control

Consider the model reference adaptive control (MRAC) system of

Narendra, Lin, and Valavani (1978):

Plant: Ax +bu, x (o) ¢ Rz
pp PP P

d + ¢'x
pp

Reference model: X Ax +br,x(0o)=0c¢ R™
mm m m

Control:




i . > = - = p
Filter (Regressor): z Afz + bfyyp + bfuup bepls z(o) = 0 ¢ R" (A.2d)
Parameter Update: 8 = Yze, 8(o) ¢ RP, Y > 0 (A.2e)
e =y, ¥,

The external signals are the reference command r(t) and the disturbance
d(t). Let 6, be a constant vector in a subset @, of RP such that when the

fixed-gain (non-adaptive) control

u= -8}z (A.3)

is applied to the plant the resulting system is stable and in addition ex-
hibits acceptable performance characteristics. Any system corresponding to

any 8, € 2, is referred to as a tuned system and is described by:

X = A x + bu , =d + c'x
pr ~ Tpipx T Uplpr 7 Ypx p¥p*

x = ApZy * DpVpox * Dp Unybp r
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Combining (A.2), (A.d), and (A.5) and comparing the resulting system to

(A.1) gives the error state as
X = X
X =( p P (A.6)

and system matrices:

A -b_6} b
A = P p , ba=1t P (A.7a)
1t - 1
begCh Ap -~ b8 L
c! = c! 0), D=-(0 I - A.Tb
( b ) ( p) (A.Tb)

Since the tuned system is stable by definition, it follows that A is

stable, i.e., all the eigenvalues of A have negative real parts.

Identification

The algorithms studied in Ljung and Sodestrom (1983) and Goodwin and

Sin (1984) will be used as representatives. Consider the possibly unstable

plant
=c'x +d
Yp 7 %p%p
(A.8)
X =AX_ +bu , X (0) € R2
p pp pp p
with (Ap. bp. cp) controllable and observable, to be identified by using the

linear parametric model
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i where y 1is set equal to either yp or ym, Af is stable, and (Af,[bfy bfu])
. is controllable. In the case when % = p and d(t) = 0, a unique 8, € BP ex-

ists such that yp = Yo where Y e satisfies:

m* = @;xm E I.:-
! X = BpXpe ~ bfyy + bfuup (A.10) ;i
-
- y=y =Y
. p m*

In practice & > p due to unmodeled dynamics and d(t) # O due to sensor
i noise and disturbances. 1In this case 6, € Rp can be chosen to minimize

either the equation error norm

§ 3.8) = |y () - y.(. A
| (0 ||yp( ) =y, ( )||y -y, (A.11)

or the output error norm,

8 J_(8) = |y () -y (O], . (A.12)
- 2 p m Yy =¥,
] .
E: where the norm ||.|| is defined as
ﬁf fﬁ
, 5
K T
/

- leCo]| = C1im % j l£ce)]2 at)'’? (A.13)
."' T')"’ o)
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When £ = p and ||d(.)]] = 0, the equation error solution is identical to the

»

output error solution and is given by the unique @, satisfying (4.10).
Hence, in this case, J,(8,) = J,(8,) = 0. When £ > p or [{ac || > 0, the
solutions are different. In general, output error provides some filtering

of the disturbance.
The on-line or adaptive procedures for obtaining output error or equa-

tion error estimates have the following forms, For equation error

identification:

y +b,u (A.18)

@ e
"

>

(1]

Update:

For output error identification:

. = - = '
Error: e yp ym ’ ym 5 Xy
Model: X, = Apx - bfyym + bfuup (A.15)
2
Update: 0O = Yx e

Let o, denote a minimizing solution of either (A.11) or (A.12) and let

(A.10) describe the resulting tuned model. Define the parameter error

6 =6 -6, (A.16)

Combining (A.10), (A.14), and (A.16) gives the equivalent equation error

system:

48
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e =e, -~ 0'z y By = yp M
_l Z = Xm (A 17 ) c.sz:;_
. DRSS
:' é = Yze !:. ._“:-

e
4

)
ey
3
3
Lal

which is a degenerate form of (A.1), i.e., the state is not driven by the
non-linear term z'9 as it is in the adaptive case (A.7).

In the output error case, combining (A.10), (A.15), and (A.16) gives

»

] the equivalent system

: e=¢, - 08'2z, e, = yp - e;xm*

. > _ '

: z Afz bfuup + bfyz 8 (A.18)
= Yze

which is also a degenerate form of (A.1). Note, however, that in the output
error case, the state equation is driven by z'6 whereas in the equation er-

B ror case it is not. Hence, the output error systems is much more like the

R )
o

- adaptive system (A.7) and can exhibit the same type of instabilities and

’

-
™
"
"=
o,

"C.- l. »
o ale,
./

N parameter drift that have been reported in several studies, e.g., Rohrs et
N al. (1982, 1983), Reidle and Kokotoviec (1984).
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APPENDIX B
METHODS OF AVERAGING FOR  ADAPTIVE SYSTEMS®

Robert L. Kosut
Integrated Systems, Inc.
101 Universivty Avenue
Palo Alto, CA 9u301

Abslract

A

» A sumnary of methods of averaging analysis
15 preserted for conlinuous-time  adaplive
Systame. The averaging results of Riedle and
Frwztzvic 01984) and of Ljung €1977) are examined
and 37. snown Lo be clesely related. Both
Lpricthes result in a sharp stability instability
boundary which ~an be tested in the frequency
Qem-in tnd inlerpreted as a signal dependant
restlivity ocondition,

1. lrnirscducticon

The “heory developed in Kosut and Anderson
('9°3, "9E5) shows thal the stability of adaptive
Sys'ems an the neighborhocd of tne equilibrium
“rajoclories s dependent on Lhe stability cof a
sy3tem of linecar Lime-varying equalions. These
#ss+n'ially are 2 linearization of the adaptive
sysiem and are r-ferred Lo here as Lhe linearized
adagtive system,

In a recent paper by Riedle and Kokoctevic
13940 1 classical methed of averaging as
2-scrized by Hale (19€9) was applied Lo the
Lincarized adaptive system. The resull is a sharp
stability-instability boundary determined by a
3.gnal dependent pcsitivity condition. This
resull 1s signifinantly weaker than the SPR
‘strictly peosilive real) condition required in the
groecf of stabilily of adaptive systems, e.g.,

* Researoh 5upp07fZE by AFOSR under Contrant
Fu9¢23-8u-C-0054

Narendra, Lin, and Valavannf (1880), Landau
(1973). 1In order Lc¢ apply Lhe averaging theory Lo
obtain this result, the linearized system has
first to be decoupled into slow (parameter) states
and fast states. It is this transformation which
is essential to the averaging apprcach and {s a
major conilribution in the Riedle-Kckotovic method.

Averaging has also been applied tc the
counter-example of Rohrs et al., (1982) by Asirom
(1983, 1984)., In this analysis, by "freezing" the
parameters, the parameter and state equations are
decoupled Lhereby obtaining the asymplclic
trajectories, Both of Lhese averaging analyses
assume that the system is pericdic or almost
periodic, an assumption that can be dispensed with
by introducing the notion of a lccal (moving)
average, Kosut, Anderson, and Mareels (1985). 1In
the same reference, the averaging apprcach is alsc
shown Lo be applicable to discrete-time systems,

In Riedle and Kokotovie (1985), the
averaging approach is extended to nonlinear
systems - and generalizes Astrom’'s analysis by
introducing the integral manifcld which completely
separales the parameter and state equations. This
latter approach is valid for the nonlinear
adaptive system, and not just the linearized part.
Similar results can alsc be found in Fu, Bodscn,
and Sastry (1985).

An averaging method was also developed by
Ljung (1977) for use in discrete-time recursive
parameler estimation. The analysis shows Lhat the
convergence preperties of the estimates can be
determined from the stability properties of a
related set cof ordinary differential equations;
the method usually referred L¢ as the 0ODE
analysis,

In this paper we summarize the results
obltained by Riedle and Kokotovic (1984, 1985) and T
show (heuristically) how they are related tc the
local stability analysis of Kosul and Anderson
(1983, 1984) and the ODE averaging approach of
Liung (1977).
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KA Atapliie Error Dyslem . .
- —t s 3. flobsl Stability and Passivity
N Althcugh 1t 1S unlikely that & truly grneric ;{
fo- Giaplive error System can be fortted Lo Caplture all ) ) )
. ) o ) . 3 cregs It is of fnterest Lo determine under what
) tre nn con of adaplive systems, the SISO adaplive ) :
Vet e . : . o i eondilions the Adaptive error system (2,1,3)

system shown in Figure 1 is offered as a good ) )

o L . . Lo I produres pounded cutputs (O,e,v,z) for all bound-d -
representation for Lhe purpeses of analysis.  The T ) - —_— -
5Y5t e e quel LONS e initial parameter errors 0(c) ¢ RT. Tnis is what ®

Sa i is meant here by "global™ stability., As it turns .-
N (2.1a) cut, such a result is possible Lo prove provided
ev Lhat: C .
=z, - H 2.10) _ A
z * 2" ¢ 1) H,,(s) ¢ SPR with gradient (3.1) D
i
v o= 20 2.1¢) :
d ( 2) H_(s) -1/2 € SPR with leasl squdres
ev
. (3.2)
L= oz (2.1d) s
3} Zy1ZyE Lg and either (3.3
we devo lopment of (2.1) can be found in Kosul and . -
Fri=alander (1982, 1985) and in Kosut and Johnson a) ey.&y ¢ LNl (3.4) .
LR In (2.1), e(t) € R is a measured error
' 4
ignzl which drives the parameter update (l.1d), 6) f*éé;E ? t?s?ggentl excitin )3'5)
t* v RY s the regressor, and 0/t) € R” is the “ p y g -

nt s 'ur-d parameter setling 6, ¢ RT. The
- n cf 9, is based on complete knowledge of
“ui! plant and distrubances. The system

Param=ler convergence L¢ _a constant in Rp or Lo a
well defined subset in RT, requires that (3.4) pe
strengthened to: -,

)
2
pirameler errcr between Lhe current cstimate at t
a
s

coresponding Lo Lhis setting is referred to as the .
tunes system. The signals e, (L) € R and z,{(1) ¢ A o
7 ire cutputs of the tuned system, and are ex:éy clanl,, z, €PE (3.6)

referred Lo as the tuned error and tuned .

vogressie, respectively, The signal v(t) € R can The above resulls can be found in Kosut and

Friedlander (1982, 1985) and in Bcyd and Sastry
(1984). Although of theoretical significance, s
they are not feasible to obtain in practice. In
the first place, due Lo unmcdeled dynamics (Rchrs

br ~egarded 25 the adaptive contrcl error.,

The sperators H_  and H2 are dependent on
arnd desorite how v o effeets Yhe error and

o 1 2, 198t i alica
r-gressce signals, We assume here that H and ?t a ',198“' 984?' He (s) € S?R Is pratically -
o i R P C R e impcssible to achieve in adaptive feedback and
H are linew-time-invariant (LTI) with stable : e ) ) 2
2y ; ; even in some outpul error identifica- tion. (This
oFip=r Lransfer functions H (s) and H_ (s). This : " . : s
. N 2y z is not the case in equalion error identificaticn.)

wW.i.1 arise, fcr example, when the plafit to be ; C.

T . T . Seccndly, when e, € L_ as in (3.5), il is required
cirtrgliled is LTI and Lhe adaptive controller is ) N L i

aear in Lne adaplive paramelers The stability that z ¢ PE which can not be guaranteed in advance
A P p : since z is inside the adaptive locp. Case (3.6)

4 anad d 1s a conseguence of the definition

vilas tne*fund parameter selting.

which requries z, ¢ PE  which is feasible to
establish - conflicts with e,,&, ¢ Ler\ L_. The
latter implies e (L) + 0 which can ohly cceur for

Tn pera s s the choice of -
- or rdtor‘r dgpend en h holc ; z* ¢ PE ~ and where there are n¢c unmodeled
fFa~ameler upcate algorithm, We will restrict dynamics which we argue is nol possible -
anventicn hers L& Lhe following representatives: y g P ot

5

0

Gradient With these impcssible to salisfy theoretical .
— requirements, it is doubtful that a global e
(rzYir) = egz(L) (2.2) stabilily theory can be attained which relies on '
passivity, i.e., condition (3.1,2). On the
¢ >0 practical side, however, there is substantial -2

evidence of well engineered algorithms that work
without SPR, e.g., Astrom (1983). These do nct
work for all O(o) and for all e, ,z, in Lm, but
rather, for restricted magnitudes and signal
(rz)tL) = P(L)zlL) spectrums. For example, {f H_ (s) is SPR for w <
then ft is expected that EK@ adaptive system
:?Yl be well behaved provided there is

g -1 ,
= P L) = ozlu) z(u) (2.3) insignificant excitation above wy .
at "

Recursive Least Squares

PO = P{0Y'>0




4, Loceal Stability: Small Gain Theory and

Bueraging

By restricling the magnitude of 0{o) and the
magnitude and spectrum of z, (1) and e, (L), it is
possible Lo obtaln conditions Lo prove local
stability, «.g., Kosut and Anderson (1983, 1985).
The lccal stability property hinges on two
premises: (1) the error system trajectories are in
a (not necessary small) neighborhood of the tuned
sciution, and (2) the linear time varying system
which maps w » 0 as given by

o= = Tz, (L) Hev(z‘(.)o(.)) + (Tw) (L) (4.1)
is L_- stable, i.e,, there exisis constants k and
v s.t. 1o]], < k]lw]|_+ b. The choice of T comes
frem (2.2) er (2.3) and 2,(L) is the tuned
regresscr. We can regard (4.1) as a linearization
cf the update algorithm, There are several ways
tc estatlish the L stability of (4.1).

Gradient Algorithm

We first consider Lhe case when T represents
the gradiant algorithm, i.e., (Tz,)(t) = ez, (L)
Wwith € » ¢.

In Anderson (1977), it i3 shown that if H v
{8) ¢ SPR and z, € PE, then for all € > o, w » §
is expcnentially stable, and hence, L_- stable.

In Anderscn ¢t al. (1985), if Hev(s) = Hev(s) +

'siis), H__(s) < SPR, A(s) is stable, and 2z, € PE
then for Sufficiently small € and ||3,}]_, w * O
is still expcnentially stable, and hence is L.~
stadble. This latter method relies on loop-
transrermations and applicaiton of small gain
thecry.

Ancther approach is to use averaging. In
Rizdle and Kckctovic (1984) it is shown that if z,

¢ PE with the Fourier series representation
jwkt
zy 1) 7 Lalw de (4.2)
K
and if the eigenvalues cof the real matrix
B =L a(uk) u(-wk)' Hev(‘ka) (4.3)

3

all have positive real parts, then for all
sufficiently small € > o, w + O is exponentially
stable, and hence, Lm-stable. Moreover, if any
cne eigenvalue of B has a negative real part, then
w =+ 0 is expcnentially unstable. Hence, there
exists we L s.t, |O(L)|+ = as t +
exponentially fast. Tt is obvious then when
H__(s) is not SPR, but only approximately so, then
the Riedle Kcokctovic result provides a sharp
Stavility-instability boundary, Note than when
H__(s) {s SPR and 2, ¢ PE we have from Anderson
(Y877) that w » 0 1s exp. stable for all ¢ > o.
On the cther hand, the result in Anderson et. al.
1985) remains valid for H_ (8) ¢ SPR (a{s) = o)
because then ¢ > ¢ is bounsgd above by Infinity,

B. Recursive Least Squares Algorithm

In Lhis case we have from (2.3) that
(Tz, (L) = P (t)z, (L)
& P = 2,z (1, L0050,

When z, € PE there exists a > 0 such that

1
P () =P o) s :;z,(r)tx('r)'m
>at .1

Thus, it is convenient to define

! for L > o

1 -
R(L) = T P, (L)
Hence

R - L P (L) (2T

and we can write (4.1) and (2.3) as,

Q= 1 R_1[u z‘Hev(z;O)] (4.4)

[ad

D .

1 t
L] -t: (Z'Z* - R)

When H_ (8) - 1 is not SPR we can now follow Ljung
(1977)egnd for“t > s and s sufficiently large,
replace the right hand side by its average.
Letting "overbar" denote average (assuming it
exists) we have:

-1

P _-—
-1 - ] u.
o(t) = ¢ R (v (z,H _,24)0) (4.5)
R(L) = % (2424 = R)
Integrating from s tos + T, T > o, gives
s5+T - .
[0(s+T)-0(s)1// dt/L = R (- (z,H_ z,)0)
s
(4.6)
s+T _
[R(s+T)-R(s)]/f/ dL/t = 1,1, - R 4.7)
s
s+T
Now change tLime scales s + T + 1 + A1, A1 = [

dt/t and letting s + = gives the differential
equations:

0,(1) = R, (1) '[w - B 8, (1)) (4.8)
Ry(1) = Tyzp - R, (D) (4.9)
SR SRR OB
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witn B = 2B il given by (4.3). These
equitions desiribe the asymplotic behavior of
(4.1) in just the same way as they do for
discrete-time (Ljung 1977).

Opserv~ Lthat in (4.9) as 1 * =, RA(x) -

Thus, when H (s) - 13
ev

3 is not SPHt and z, ¢

ZyZye
PE wilh Fourier representation (4.2) the
asymplotes are stable if

Re 2 (L) > ¢ (4.10)

where

L= (z,‘z,',)_1 B

- (z a(wk)ut—uk)'>" Il dalu) By (=)
K K . 11)

If Re H(jw ) > p > 0 at low frequencies, and if
latw, )] is%small al frequencies where Re H(ka) <
0, Lhen Re A(L) = p. Thus, all parameler
asymptotes have a uniform rate of convergence
Whish is noct the case for Lhe gradient algorithm
with a time-invariant gain.

W

Av-raging: A More General Approach

In tnis section we will establish a general
form of wne adaptive errcr system (2.1,3) which is
, us=ful for application of averaging methods. The
first step is t¢ transform (2.1,3) into a set of
norlinear Lime-varying differential equations. To
dc Lhis cbserve that if H_ (s) are strictly proper
functions (a convenient i?Yuerative, but nol
necessary, assumption) then we can write

Ho(s) = c'(sI-0) b
ey

H_ (s) = D(sI-A) b

(5.1)

where & ¢ R p e BT, ¢ ¢ BT, D ¢ RPX, with

{a,b.[ec D']) a minimal representation. Also, Re
AlA) < O reflecting the fact that H_  and sz(s)
are stable. The error system (2.1) 1s then
equivalently expressed as
e =e - c'x
2z =12z, - Dx
(5.2)

x = Ax + bz'd
0= (T2)e

by «liminaling the variables e and z we can reduce
‘5.2, Lc the coupled state-space description:

e o= (L) £(L,0,%) (5.3)

x = Ax + g(L,¢,x) (5.4)

- L
M NYOMD
I

.-f;I}
19,1
(V%)

with the gradient algorithm (2,2), let (YRS

.. 1] ‘.’l. +

6(1) = 0(L) N

(5.5) c e,

Yit) = ¢ R

IR

and JREJ W WA
¥ )

f{1,0,x) = z,(t)e, (L)~ Qu(t) x + ¢'x D x
QL) = z, (L)c' + e (L)D (5.6)
g(1,0,x) = bz, (t) - Dx)'0

With the recursive least squares algorithm (2.3),
define:

A(L) = 3 p(L)” (5.7)
and let
o(t) 1
¢(L) = , Y(L) = 1 (5.8)
col{R(L)}
where Lhe oprerator col{R} stacks up the columns
of the matrix R to form a vector. Thus,
- ”L.O»X) -
R "(z,(t)e, (L) - Q. (L) x + ¢"xDx)
(5.9)
col{z, (L)zy (L)' — z, (L)(Dx)" - Dxz, (L)’
+ Dx{Dx)*' - R}
g{t,¢,x) = bz, (L) - Dx)'® (5.10)

The coll{.} operator was used by Ljung (1978) t¢
develop the discrete-time version of (5.3), (5.4).

Heuristics: The Integral Manifold

The basic idea in the application of
averaging methods to (5.3,4) is to see what
happens when Y(t) is small. Essentiallyl, ¢(t)
slows down and we can repalce the right hand side
of (5.3) with its average, i.e.,

¢ = Y(LIT(9) (5.11)

T
where T(¢) = lim 3 J £(L,0,X(L,0))dt (5.12)
[*]

Tow

assuming the limit exists, (Such is the case, for -
example, when f(t,¢,x) and g(t,9,x) are periodic L
in t for all bounded ¢ and x). To arrive at -
(5.11) formally requires the introduction cf the
integral manifold as suggested by Reldle and
Kokotovic (1985) [see Hale (1969) for discussion
of the integral manifold]

The integral manifold M of (5.3,4) is the
set,
M= {t,0,x :

x(L) = h(t,e(L)]} (5.13)
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By substituting x = h(t,¢) into (5.3,4), Lhe
minifold functicn hiv,4) 18 seen to satisfy the
partial differential equation

Ty YL) P f(t,s,h) Ah + g(t,¢,h) (5.14)

Whenever Y(L) is sufficiently small, a reasonable
approximation is to h(t,¢) is given by ho(L.o)
which is Lhe sclution to

Mo aan + g(L,e.n)
ot

= F(S)ho + bz, (L)'0 (5.15)
where Lhe last line follows from (5.6) with
F{Q0) = A ~ b0'D (5.16)

In (5.14), 0 and t are regarded as
independent variables and, hence, we can define
the stabilizing parameter set

D, = 10 ¢ aP: Re A(F(0) < o} (5.17)

Tnhus, for Y't) sufficiently small, we can refer Lo
h(t,¢) with © ¢ D_ as the stable manifold, which
w2 will approximafe by ho(L,O), 0 € Ds'

The final transformation on (5.3,4) is
chrained by examining the behavior of (¢,x) in the
nzighbcrhood ¢f the stable manifold. Introduce
the errcr state,

£ = x - h(t,s) (5.18)

Using {5.18), and (5.3,4), with the approximation
hO(L,G) fer h(t,4), we have

# = Y(LE(L,0,h (1,0)4E) (5.19)

£ - FOE (5.20)

If y(v) is sufficiently small and O remains
{moving siowly) in D_ then E{L)* o exp. fast. As
a result, by the samé reasoning as in Section i,
the stability of (5,19) is identical to the
stability of the asymptctic system:

¢A(1) - f(oA(r)) (5.21)
where
- ‘ T
f(¢) = lim T S f(t,e,n_(1,0))dL (5.22)
Teo o °

assuming the limit exists. The stability of
(5.21) is given as follows. The proof is in Hale
(1969,.

Theorem
Let oo denote a sclutfon of

?(00) =0
and define the matlrix,

¢ - %

3¢

Provided Re A(G) « o:

(1) If Re A(G) < o then ¢° 13 u.a.s.

(ii) If max Re A(G) > o then oo i{s unstable.

Application to Gradient Algorithm

Applying this result to (5.5,6) with the

gradient algorithm and with z, ¢ PE and z,e,
= 0, gives G = -B with B from (4.3). Since Y(L) =
€ > 0, Wwe can only conclude that if Re A(B) > o
and ¢ is sufficiently small, then 0(L) approaches
an e-neighborhood of © = 0 as t + =, Provided of
course that ©(1) ¢ D_ long enough for transients
to die out, which is unprovable as yet in general.

Application to Recursive Least Squares Algcrithm

Under ths same conditions and with the same
provisions as above, G =-L with L from
(4.11). This time, since Y(t) = 1/t + o as t » =,
we can conclude that if Re A (L) > o, then O(t) -
oas t + = at a rate 1/t,
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APPENDIX C

Fundamentals of Control for Large Space Structures:
Robust and Adaptive Design

Abstract

This report gives a summary overview of
robust and adaptive control design for LSS.
It is one section of a larger internal report in

progress.

11-2.2.7.4.1 Control Design for HAC/LAC
Architecture. In this section we will discuss the
steps involved in contro! design for the HAC/ LAC
architecture. Although the architecture is special-
ized. the control design methodology is not and can

_ be quite general. We will discuss three methodolo-
gies for design: (1) an LQG based methodology
whose genesis is the ACOSS/VCOSS programs.
and (2) a more recent approach involving what
is known as “Q-parameterization” and “Hee-
optimization”. These latter methods are frequencv-
domain oriented rather than state-space oriented
like the LQG approach. (3) We will also discuss an
adaptive control strategy which can be utilized for
online self-tuning. We refer to this approach as
“adaptive calibration”. This approach has been
developed by ISI under an on-going research con-
tract with the Directorate of Aerospace Sciences
in AFOSR.

Limitations of Design. Independent of the
design method. the defining characterisuc of the
vibration control problem is there are an infinite
number (theoretically) of elastic modes. with low
natural damping. and the controller bandwidth
extends over a significant-number of these modes
{Fig. 11.2-28) . The low frequency modes interact not
only with the attitude controller but contribute
directly to the deformation geometry of the structure
which itself may require accurate control. Proper
control synthesis requires that performance criter:a
be precisely formulated or the control problem 1s
ill-posed.
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The control design approach must properiy han-
dle the poorly known higher-frequency modes by
not destabilizing them while controlling the low-
frequency modes. Indeed. no matter where the
controller roll-off frequency is situated. the infinite
nature of the modal spectrum implies that there will
be modes within and beyond the roll-off region. fur-
thermore. destabilization is likely and almost certain
to occur in the roll-off region, a situation which can
only worsen for closely packed modes and low
natural damping. This phenomenon sometimes
referred to as “spillover” is one of the most crucial
problems faced by the control designer. In more
general terms. spillover can be viewed as an aspect
of the problem of robust control design; this will be
discussed more in a later section.

Modeling of Flexible Spacecraft. A central issue

in the active control of space structures is the devel- Ll
opment of “correct” mathematical models for the e
open- and closed-loop dynamical plants. Programs R
such as NASTRAN and SPAR are the primary cur- N
rent tools for generating dvnamical models of con- e
ceptual spacecraft whose structure cannot be ideal- ‘_-'.:\""
ized by simple models of beams, plates. and beams ‘ Qj:*-:::
with Jumped masses. ;:.:::::::

Finite-element structural programs generally pro- ;:T:;':

vide the control designers with a set of modal fre-
quencies and a set of mode shapes (eigenvectors)
corresponding to appropriate boundary values
(e.g . free-free modes}. These eigenvectors are

()
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given 1n discrenized form. i e . a st of modal dis-
placements in the x. v. and z directions at each
nodal station In some cases. modal rotations are
also required In addiion coordmates and a “map”
of the structure’s nodes must be provided to allow
the reconstruction of physical displacements in
terms of therr modal expansions.

The important point here is that. for any nontri-
vial flexible satellite configuration. the volume of
informanon 1s so large that the data handling must
remain entirelv within the computer and its mass-
sturage facilities. Development of this database. in a
form usable by control synthesis software. is a fun-
damental necessity for the synthesis and evaluation
of complex controls which require modal trunca-
tion. actuator/sensor location and type changes.
and evaluation of system performance for parame-
ter and system order changes. Preparation of a
structure for controls is a major pan of the overall
effort required to develop structural control systems.

Nonlinear Models. For single-body monolithic
structures. the fine-pointing attitude dynamics are
subsumed in the rotational rigid body modes
included in the modal matrix. When only “small”
motions of a space structure are being considered.
the conventional linear structural dynamics analyses
(NASTRAN and SPAR) are adequate. and the
naid-body modes are formally handled together
with the elastic modes. even though the actuators
necessary to control them will be different. in gen-
eral. from those used 1o control elastic vibrations.
When larger attitude angles need to be considered.
if the angular rates remain small. the linear equa-
tions are still applicablc provided that the rigid body
modes are now given in terms of three attitude
angles which then constitute the first three modal
coordinates The displacements are then interpreted

as the linear deformations of the structure with
respect to the rotated frame. This procedure
removes the kinematic nonlneariues resulting from
the linear stretching of the structure under the classi
cal rigid-body modes. However. for large angular
rates, nonlinear dynamic effects have to be mod:
eled. even though structural deformations can stll

be represented by linear equations
Two-Level Control Design: The HAC/LAC

Methodology. The two-level approach consists of
a wide-band. low-authority control (LAC) and a
narrow-band. high-authonty control (HAC). HAC
provides high damping or mode-shape adjustment
in a selected number of modes to meet performance
requirements. LAC. on the other hand. introduces

low damping in a wide range of modes for maxi-
mum robustness. Figure Il 2-29 shows the control-
design procedure with integrated LAC and HAC
designs.

STRUCTURE DESICN
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Fig. 11.2-29 Analytical Control-Design
Procedure
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LAC i usually implemented with colocated sen-
sors and actuators However. the theory. based on
the work of Aubrun. 1s applicable 10 muluple
actuators sensors with cross-feedback and possibie
filers [Aub 1)

HAC uses a collection of sensors and actuators
not necessanly colocated. Selecting the increase in
damping ranc is realized by any number of meth-
ods. including: LQG with frequency shaping.
Q-parametization. or He-optimization. These
methods provide roll-off over desired frequency
regions HAC may destabilize modes not used in
the design. LAC is. therefore. necessary to “clean
up” problems created by HAC.

The need to integrate HAC with LAC is shown in
Fig. 11.2-30. HAC is based on models valid over a
limited frequency region. It produces large increases
in damping ratio and disturbance rejection in the fre-
guency range of interest. The effect of the HAC
controlier on modes not used in the control design
and outside the controlier bandwidth may be stabi-
lizing or destabilizing. LAC is designed to provide
protection such that adequate damping is provided
in the mode most adversely perturbed by HAC.
With reference to Fig. I1.2-30. the LAC moves the
entire uncertainty region above the zero level damp-
ing ratio.
~ In the next few sections. a more in-depth discus-
sion of the blocks in Fig. 11.2-29 will be presented. in
particular: actuator, sensor location. model and
controller reduction methods. and HAC/LAC syn-
thesis. These methodologies rely on certain proper-
ties of feedback control: this raises the issue of
robust control design which is fundamental to the
whole design philosophy of feedback. especially for
LSS. and this will be discussed first.

Robust Control Design. This section will describe
how 1o evaluate the robustness of a control design.
The evaluation is independent of the methodology
used to achieve a particular design To illustrate the
technique we will consider the robust control prob-
lem of vibration suppression with unmodeled high-
frequency dynamics. Figure 11.2-31 shows the con-
tro} system where P(s) is the plant transfer function
matnix from actuator inputs to LOS sensor measure-
ments. and where C(s) is the controller transfer

SRR _......:_. et \.:‘. _.-._. e .'_..‘_..
o

- - - ‘.- _-—' - " -..’ . . l.' -“ u.' --" .“ -.' h.‘.-\'. '.
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Fig. 11.2-30 Need to Integrate High-Authority
Controller (HAC) and Low-
Authority Controller (LAC)

d(t)

JI Cis) l‘,—

Fig. 11.2.31 Vibration Suppression Control
System

function matrix. Neglecting the rigid body modes in
P(s) and assuming infinite bandwidth sensors and

actuators.
P Y G, (s)
(s) = = (s
k=1 k
where
. 1
Ck(s, ) 52 « Upars o ? Mk
K k "k

Suppose that n of the modes are known. Let P, (s)
denote the known part of Pl(s).

For example. P,(s) can be obtained from P(s) by
modal truncation. i.e.. the first n-modes of P(s) are
retained. One can ask the question: is this the best
choice for a given model order n? In general. it
depends on what is meant by "best.” For closed-
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loop control at as usualle better to retain those
n-modes which most affect the closed-loop perfor-
mance How 1o select these modes will be discussed
in the sechon on model reduction

Assuming the modes have been selected. define
model error as :

Ms):Pls) P (s)- L G, (s)
n ke K

n
observe that é(s) is stable because both P(s) and
P.(s) are stable. Hence. it can be shown that the
closed-loop system is stable if.

a! .
a[_m*,J © bpte) = 1.0[0,,04]

where Q._(s) is given by Q.(s) = Cis)
[1+P,(s)C(s})] -} and where o {.) denotes the maxi-
mum singular value of the matrix argument. The
quantity A, () is referred to as the “stability mar-
gin”. hence. the subscripts “sm”. (See {Doy. 1].
[Kos 1))

The stability robustness test depends on the loca-
tion of uncertanty. Additive perturbations such as
those just discussed result in the test as shown. The
table in Fig. 11.2-32 shows a variety of stability mar-
gins corresponding 1o generic forms of model error.
In Fig 11.2-32. P = plant. C = control. M nominal
model. and A = model error. The stability margin is
expressed as a function of C and M which are
known quantities. Examples of some model error
tests are shown in Fig. 11.2-33 for the CSDL #2
VCOSS model
Performance Robustness. The stability robust-
ness tests can be extended to evaluate performance
robustness to mode! error. The evaluation is deter-
mined by how performance is measured. Consider
the closed-loop system

vit) = H(s)d(t}

with H{s) the closed-loop transfer function.
Although dt1) is not precisely known. it can be con-
sidered as the output of a weighting filter W(s)
driven by “nose” w(t). then d(t) = W(s) wit).
Output performance versus input is shown in
Fig 11.2-34 The table is derived by bounding the
“nowie” input wit) 1in terms of power. energy. and

magnitude Except for the mag in-mag-out bound.
all other bounds depend directly on the frequency
dependent quantity [H(wIW(w)] A natural fre-
quency domain performance cntenion 1s then

b["'(l llW(M] s Pl

where plw) 1s selected on the basis of power.
energy. and magnitude specifications on the output
signals In terms of model error performance specifi-
cation is sansfied if

o[mm] e )
PAY

with 6, (w) is the performance margin given by
5P.'\.1") = [1 - pn“".) ,-p(-,} 55“""'.’

and where é,(w) is the performance of the nominal

closed-loop system H,(s} with no model error.
Then.

P L) = 5 [“n“”’ wu.».l)]

which must always be smaller than p(w) in order for
dpmlw) to be meaningful. Note that 6, (w) > 8, (w).
as would be expected since performance inciudes
stability. As before. the location of uncertainty mod-
ifies the calculation of 8, (w).
Usefulness of Stability/Performance
Robustness Tests
The stability /performance robustness tests are
indispensible in obtaining a realistic preliminary
design. They are used in a number of places in the
design cycle to establish the HAC/LAC gains. effect
of actuator/sensor dynamics. and the criteria for
model and controlier reduction. which will be dis-
cussed in the next section. The tests are also invalu-
able in establishing criteria for online systern identifi-
cation and control, which will be discussed later on
in this section.
Model Reduction. In general. the requirements
for model reduction for active control of large space
structures must include the following:
1. The reduced model should be suitable for con-
trol design and synthesis. It shouid incorporate
all {eatures critical for the selection of a feedback
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Fig. I1.2-32 Source of Model Error in Spacecraft System

structure and control gains.

2. The reduced model should accurately incorpo-
rate actuator effectiveness. sensor measure-
ments and disturbance distribution [ACOSS. 1}.

3. The dynamical characteristics of interest in the
structure should be represented in the reduced
model.

A basic methodology for model reduction which has

been used successfully in ACOSS,VCOSS and a

number of other programs. internal balancing. is

now described. Other approaches also exist which
will be examined in the program.

Internal Balancing

To determine the most important modes for con-
trol design. many criteria must be considered includ-
ing controllability. disturbability. observability in per-
formance. and observability in the measurements.

Anv mode which is highly controliable. observable.

and disturbable must clearly be included in the

design model. however highly controliable-but-
unobservable modes. for example. are difficult to
yudge. ‘Moore [Moo. 1] has developed an “internal
balancing™ approach whereby asymptotically stable
linear models are transformed to an essentially

- - S .
IR PN N S S
Y PRI, W L RO A

unique coordinate representation for which control-
lability and observability rankings are identical. The
definition of internally balanced coordinates follows:

Def. An asymptotically stable model

‘x = Ax - Bu} is internally
ly = x|

balanced over |0,”7) IFF

At T T At

/e BBTeA tay = /QA ‘CTCe dt =z
t ()

2

where E - diag{“

i>i,0i220

Notice that the balanced representation is such
that the controllability Gramian and observability
Gramian are equal and diagonal. The o,'s are
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termed “second-order modes.” In general. the
required transformation “scrambles” the original
coordinate system such that the phvsical meaning of
the states is lost.

However. for lightly damped structural models
with decoupled dynamics. the internally balanced
coordinate representation is approximately equal to
a scaled representation of the mode] states. Thus it
is possible to write approximate formulae for the
states in terms of the original model. Three modal
rankings are considered:

¢ disturbance inputs to LOS
® actuator inputs to LOS
® actuator inputs to sensor outputs

These “'second-order modes™ rankings give
important evaluations about which modes to retain
and validity of actuator/sensor placement. These
rankings are shown in Fig. 11.2-35 along with LOS
modal cost [Gre. 1} computed using the colored
noise disturbance.

Here the absolute values of the modal costs (for
the VCOSS 1 model) are used. The RMS second-
order modes and modal costs are plotted versus
mode number in Fig. 11.2-35. Immediately ident
is the clustering of these modal phenomena. The
disturbance effect as seen through the line-of-sight is
constrained to clusters of modes as is the ability to
measure and control the model. The coincidence of
the controllable clusters and disturbable clusters
indicates a favorable actuator/sensor configuration
for the problem
Frequency Weighted Balanced Realizations.
Balanced reahzation mode! reduction can be
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Fig. 1.2-35 Open-Loop Mode! Analysis

extended to finding a reduced model P, (s) of 2 high
order model P(s) such that

s:"p g =wo(w) [P(i.;) - Pn(iw):l LAY : <

where W (s) and W (s} are output and input fre-
quency dependent weighting matrices. These can
be chosen to reflect closed-loop requirements on
model error. vis a vis. frequency-domain stability
and performance margins. For example. stability of
the closed-loop sustem with C(s) designed from
P,(s) is guaranteed if:
W (s} =1
Wis) = W(s} = C (s)[I+P,(s)C,(s}]) "1

The problem is that W (s) is dependent on P_(s)
which is unknown. The let out is that its shape is
partially determined by the performance spec: thus.
we can make an imnal guess This technique is

62

e e e,

- r"‘,';,'-l- ',

PRERE




!
I
'
]

r

referred tu as “advanced loop shaping 7 This
involves an iterative problem which 1s solvable via
successive approximation.

Compensator Order-Reduction. An alternate to
plant order reduction 1s 1o design a high order com-
pensator and then reduce the compensator order.
Let Cis) denote a high order compensator of order
N designed to control P(s} of order N or larger Let
C.(s) denote a reduced version of C{s) to order
n<N Motivated by the stability robustness theory.
view Cis) ~ C (s} as a perturbation Hence. the
closed-loop system with P(s) and C(s) is stable if:

sup ¢ {W(;..-) [C(;..') - Cn(l-:)] l<1

-

where

Wis) = (I + P(s) Cis))~ ! Pis)

The weight Wis) is stable because the high order

contro! Cls) stabilizes the closed loop system. In this
case W(s) is known and we can apply internal bal-
ancing to find C.(s). The disadvantage to this
method is that 11 is necessary to find a high-order
compensator. The advantage is that once it is
found. internal balancing applies immediately since
the weights are known On the other hand. direct
plant order reduction does not involve control
design for the high order plant, but does involve an
iterative process since the weights are functions of
the (unknown) reduced model.
Low-Authority Control Design. Low-authority
contro! (LAC) systems. when appled to structures.
are vibration control systems consisting of distrib-
uted sensors and actuators with limited damping
authonty The control system is allowed 1o modify
onlv moderately the natural modes and frequencies
of the structure. This basic assumption. combined
with Jacobi's root perturbation formula. leads to a
fundamental LAC formula for predicting algebrai-
cally the root shifts produced by introducing an LAC
structural control system. Specifically. for an
undamped. open-loop structure. the predicted root
shift (dA.), is given by
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z Car ®an ®en (IID)

1
{dr_Ip * 3
n 2

where the coefficient matrix C,, is a matrix of
(damping) gains. and ¢,,. ©,, denote. respectively.
the values of the nth mode shape at actuator station
a and sensor station r.

Equation (ll-1) may also be used to compute the
unknown gains C,, if the d\, are considered to be
desired root shifts or. equivalently. desired modal
dampings. While an exact “inversion” of Eq (II-1)
does not generally exist. weighted leasi-squares
type solutions can be devised to determine the actu-
ator control gains C, necessary to produce the
required modal damping ratios. This determination
of the gains is the synthesis of LAC systems.

For structures which already have some damping
or contro! systems in which sensor. actuator, or filter
dynamics can either be ignored or are already
embedded in the plant dynamics. the root perturba-
tion techniques and cost function minimization
methods above can similarly be used to synthesize
low-authority controls.

Robustness of LAC systems. When sensors and
actuators are colocated (i.e.. a = r). are comple-
mentary. and only rate feedback is used. formule
(II-1) reduces to

. o) 2
d)‘r\ - E‘n “n T 2 zca © an
a

which shows that the root shifts are always 1owards
the left of the j-axis if all the gains are negative. This
robustness result is obviously based on the assump-
tion that both sensors and actuators have infinite
bandwidth. and also that the structure was initially
undamped. Several departures from this ideahza-
tion occur in the actual practical implementauon of
the LAC systems. The most severe of these results
from the finiteness of the actuators’ bandwidths.
More precisely. the second-order roll-off introduced
by the actuator dynamics will always destabilize an
undamped structure. However. when some natural
damping is present in the structure. or when a pas-
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sive damper 1s mounted in parallel with the actua-
tor, additonal active damping can be obtained with-
out destabiizing the structure

High-Authority Control Design. The HAC con-
trol design procedure can be based on any number
of mulnvanable design methods. e.g.. LQG,
Q-parameterization. H, -optimization. etc. Increased
penaliies in the LQG cost functional are placed at
those frequencies where less response is desired. The
concept of frequency-shaped cost functionals was
introduced prior 10 ACOSS [Gup. 1].

The frequency shaping methods are useful in sev-

eral areas of large space structures control. Three
principal applications are important: (1) robustness
(spillover avoidance). (2) disturbance rejection. and
(3) state estimation.
Management of Spillover. Spillover in closed-
loop control of space structures is managed by
injecting minimum control power at the natural fre-
quencies of the unmodeled modes. Procedures for
controling spillover at high-frequencies are usually
discussed. although similar techniques are applica-
ble for other regimes.

The high-frequency spillover may be controlled
by modifying the state or the control weighting.
Conversion to the frequency domain gives the fol-
lowing performance index:

The probiem of robustness (spillover manage-
ment is solved by making Q and R functions of fre-
guency. Figure 11.2-36 depicts the madification to
the nominal LQG controller. Observe that fre-
quency shaping adds fillers whose inputs are the
inr.ovations outputs of the state-estimator in the
LQG controller.

64

LARCE SPACE
STHUCTURL

YLoc 1

"NOMINAL Y LOC
ESTIMATOR
CONTROLLER

FREQUENCY SHAPING | /NNOVATIONS

FILTERS

Fig. 11.2.36 LQG Control With
Frequency-Shaping Filters

Summary. The application of frequency-shaping
methods to large space structures leads to a linear
controller with memory. However. additional states
are needed to represent frequency-dependent
weights. hence. there is an increase in the conmoller
order. The software needed for these controller
designs s similar to that for standard LQG problems.
Controller Design Using Q-parametrization
and H-Optimization. During the last decade.
mathematical theories of servo design have been
based mainly on quadratic minimization of the
Weiner-Hopf-Kalman type. usually applied to state-
space models. e.g.. LQG controls. However.
despite the academic success of these methods.
classical frequency response techniques relying on
“lead-lag compensators” to reduce sensitivity have
continued to dominate industrial servo design. One
reason is that quadratic design tends to have poor
sensitivity. On the other hand. the frequency
domain description has proven to be more suitable
to characterize uncertainties which arise in the plant
approximation ‘identification. and frequency
domain technique usually results in more robust
design. e.g.. frequency-shaped LQG can be viewed
as an indirect frequency-domain design approach

Two direct multivariable frequency domain
design techniques have become popular in recent
years. the Q-parametrization technique and the H, -
optimal sensitivity.




Q-Parametrization Deslgn. Consider the hnear
unity-fecdback systems shown in Fig 1} 2-37 where
P(s) 1s the given In...  me-invanant plant. C(s) is
the linear compensator. u, is the reference input.
u, and d_ are respectively the plant-input distur-
bance and plant-output disturbance. and vy, is the
plant output.

u2lﬂ doul
u‘ls) e,u) y‘lﬂ ez(sl yz(l)
Cts) | - I —

i

Fig. 11.2-37 The Unity-feedback Systems

The ciosed-loop svstem inpui-output transfer
function is given by

1 -1

cua+~pe)ytec 1+p0)”! ¢ 0 _PO)

H = 1

yu pc i+pC) VP (1 +cPy)!

(1 + PCY

(For simplicitv. we drop the argument s in P(s}.
C(s). etc. in this section.)

By introducing the parameter {transfer function)

Yy
Hyu = u2 -.[yl]
d Y2

[+]
Q = ca+prcy!

H,, can be rewritten as

Q -Qp -Q
H H

vy PQ  (1-PQ)P 1-PQ

Note that the closed-loop input-output transfer
function. for the given plant P. 1s completely speci-
fied by the parameter Q in a very simple manner: it
involves only sums and products of P and Q.

In a tupical control sustem design problem. the
two most important closed-loop transfer functions
are H_\,Qu] and H_zh1 : H\zu is the transfer function
from reference input u, to output y, and H,., isthe
transfer function from plant-output disturbance d_

and output y, They specify respectively the servo-
performance and regulator performance of the
feedback system S The two transfer functions are

given by

H . PQ AND
Yl

Hyzdo - 1PQ
Therefore. the control design problem reduces to
choosing the parameter Q so that the closed-loop
svstem S is stable and that Hyzu] and HWU“ are
“satisfactory”™. After the parameter Q is chosen. the
corresponding compensator C can be obtained by
the formula [Cal. 1. Chap. 8]

c - an-pay’

Hence. there is a one-to-one correspondence
between C and Q. Consequently. for each parame-
ter Q chosen. there is a unique compensator C
which achieves the specified Q.

The selection of the parameter Q in the design
process raises several questions: What are the con-
ditions on Q so that the resulting compensator C is
realizable (e.g.. proper)? What are the class of all
Q’s which result in a stable feedback system? How is
an “optimal” Q chosen?

Realizability. If the plant P is realizable. then the
compensator C is realizable if and only if the param-
eter Q is realizable. Note that a physical plant is
always realizable.

Global Parametization. 1f the open-loop plant P
is stable. then the closed-loop system S is stable if
and only if Q is stable since sums and products of
stable transfer function matrices are stable Conse-
quently. the class of all stabilizing compensators 1s
gven by

1

{o 0 PQY " Q15 STABLE}

and the class of all achievable stable input-output
transfer matrix H__ = and the class of all achievable
stable disturbance-to-output transfer matrix Hsz-'x
are given respectivelv bv

{pa| a1s sTaBLE)
and

{1-PQ| Q 15 STABLE}




These sets give global parametrization of all stabili-
zaung compensators. and all achievable 1/ O charac-
tenistics in terms of a stable proper transfer matrix Q.
In other words. the class of all “feasible” designs are
parametrized by Q.

If the open-loop plant P is not stable. additional
constraints have to be added to the choice of Q. in
addition to stability and realiability of Q. For exam-
ple. Q must contain right half plane zeroes to cancel
the unstable poles of P. Currently. there are three
approaches to obtain global parametrization of a
given unstable plant: (i) Factorization representation
theory [Des. 1}: (i) Direct approach {Zam. 1]:
(iii) Two-step compensation [Zam. 1].
Optimality. The Q-parametrization alone does not
quantatively address the issue of optimal design.
The designer selects Q from the class of “feasible”
designs. on the basis of the desired input-output
response. a priori knowledge of external distur-
bances. bandwidih. dynamic range and uncertainty
of the plant. etc.

Optimal design based on the Q-parametrization
and fractional representation framework has
become very popular in the research community.
The Heoo-optimal sensitivity design are among the
results available. .
Hx-Optimal Sensitivity Design. The Hoo-
optimal sensitivity design is an extension of the
Q-par~ mnetrization technique to include a quantita-
tive performance measure of the closed-loop system
and achievable optimality based on the perfor-
mance measurz. Roughly speaking. the Hee design
problem is the following: given an open-loop plant
Pis) and a low-pass weighting function W(s). find
the compensator C(s) so that the Hoe-norm of the
weighted sensitivity {1+ PC)~ W is minimized sub-
ject to the stability of the closed-loop system.

Using the Q-parametrization formulation. the
problem is equivalent to the following: find a Q in
Hee such that the closed-loop system is stable and
that (I1-PQ)W is minimized Since the weighted
sensitivity function is affine in Q. the equivalent
problem is easier to solve than the original problem.
Solution to the Hx-optimal Sensitivity Prob-
lem. Based on the fractional representation
{Coprime factorization) formulation. several solu-
tions have been proposed and algorithms given.

e

However. all the proposed algorithms are concep-
tual in nature. suitable only for simplc text book
example. More effort is needed toward a numeri-
cally robust synthesis procedure. Relevant research
results available during the JOSE period of perfor-
mance will be evaluated and used as appropriate.
11-2.2.7.4.2 Adaptive Control Techniques.
Uncertainties in both disturbance spectra and svs-
tem dynamical characteristics will limit the perfor-
mance obtainable with fixed gain, fixed order con-
trols. The use of adaptive type control. where
disturbance and.'or plant dynamics are identfied
prior to or during control. give system designers
more options for minimizing the risk in achieving
performance benchmarks. For the case of SBL
spacecraft. where performance levels are extremely
high. it is absolutely necessary that disturbance and
plant models be equally accurate. Since data from
ground tests do not usually represent the flight con-
dition accurately. it follows that an on-line proce-
dure for identification and control is necessary.

In this section a method for on-orbit identification
and control of flexible spacecraft referred to as
“adaptive calibration™. is described. This method is
being developed by 1S] in an on-going basic
research program in adaptive control supported by
AFOSR Directorate of Aerospace Science. The
basic objective of this research program is to estab-
lish the theoretical foundations and performance
limitations {for adaptive control applications to large
space structures. An important element of the
research is to examine implementation concepts
which can lead to appropriate hardware develop-
ment. A summary of recent results is in [Kos. 1].

The program was originallv formulated in late
1982 in response to the increasing concern that per-
formance robustness of Air Force LSS tupe system
would be inadequate to meet mission objectives
The need to identify modal frequencies. for exam-
ple. in high-performance disturbance rejection
systems has been shown in ACOSS (198]) and
VCOSS (1982). The deployment of high-
performance optical or RF systems may require on-
line identification of critical medal parameters before
full control authority can be exercised Parameter
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sensitivit,. manifested by performance degradation
o1 loss of statuhty (poor 1obustness) may be effec-
tvely reduced by adapuve feedback mechaniza-
uons. Reducing the efiects of on-board disturbance
sources on the system performance (disturbance
rejection) is particularly important for planned Air
Force missions For these cases. adaptive control
mechanizations are needed to produce the three-to-
five orders-of-magnitude reductions in hne-of-sight
jitter required by the mission.

AFOSR Research Program Summary. The
research was originally directed toward real-time
adaptation using standard esumator and controllers
forms in the basic adaptive control structure. as
shown in Fig. 11.2-38. Most adaptive control algo-
rithms can be described in this form For example.
one could select from the following catalogs of
major areas’

Model | Control Design |Adaptation
ARMAX | Model Reference}Gradient

State- Self-Tuning Recursive Least
Squares

Space |Pole-Placement [Recursive Max
Likelihood
Extended Kalman
Filter

DISTURBANCES

aa SYSTEM - OUTPUTS

PARAMETER

INPUTS ESTIMATOR

4 PARAMETERS

- CONTROL LAW =

OBJECTIVES
Fig. 11.2-38 Adaptive Control System

The schemes also differ in terms ol update rates.

Typicallv the outer control loop 1s ar a fast rate,

whereas the parameters from identfication are
updated more slowly. Adaptive schemes are
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referred 1o as “recursive if the identification rate is a
fixed muluple of the controlier rate if identification
is used when necessary for cahbration the scheme 1s
referred 10 as adaptive calibration

Although a great deal of research results are avail-
able about adaptive control and identification,
unmodeled dynamics and broadband disturbances
will significantly upset most algorithms Hence. the
lack of a well-developed robustness theory for adap-
tive mechanizations required a reexamination of the
problem at @ more fundamenial level. 1 e . develop-
ment of mode! and disturbance uncertainty bounds
for which adaptive aigorithms would exhibit (stable)
desired performance. Toward this end there have
been two major accomplishments:

(1) Development of Theory In examining the
possible use of recursive adapuve control it was nec-
essary 1o generate new theory of use on large space
structures [Kos. 3). This theory accounts for the
effect of unmodeled dvnamics with distributed
parameter systems. such as flexible space struc-
tures. and extends current adapiive theory in sev-
eral directions

In the first place. current adaptive theory provides
conditions for “global” stabilitv. i.e.. bounded-input.
bounded-output stability with no limitation on the
size {or spectrum} of the bounded-inputs (e.g.. dis-
turbances and references). Secondly. the theory is
limited 1o finite-dimensional linear systems. This lat-
ter condition cannot be satisfied by a flexible space
structure, which is a distributed parameter system.
Also. the disturbance and reference inputs efiecting
the spacecrait have limited magnitudes and spec-
trums and these limits are known. although not pre-
cisely. The developed theory circumvents those dif-
ficulues by prowiding condinons for “local” stability.
i.e.. limitations in input size and spectrum are
accounted. The theory also allows for a distributed
system as well as providing quantifiable bounds on
permissible model error. These results extend the
state-of-the-art in adaptive theory beyond the cur-
rent imits

{2) Adaptive Calibration: The use of “slow”
adaptive control, which is more practical than recur-
sive adaptive control in most space applications.
necessitated a new methodology development




merqing key ideas in parameter estimation. system
dentification. and robust contiol dessign The term
“siow” means that there is sufficient time to run
batch identification before the control system is
modified The methodology developed resolves a
long standing problem with adaptive systems of this
type. namely. the means to provide a guaranteed
level of performance given an “identified” model of
the system together with the model error between
the system and the identified model. In fact. the
methodology generates performance versus model
error tables (1o be stored in the computer} from
which the control design is immediately obtained.
Moreover. the order of the control design is deter-
mined strictly on the basis of model error and per-
formance demand. rather than trial and error as has

CSDL MODEL NO. 2

Fig. I-2-40 Draper Simulation System

been suggested in the past. 2. Estimate 6(w) = model error versus frequency
Application of Adaptive Calibration. The basic using FFT. This is dashed curve in Fig. 11.2-41.
problem with control based on identified models is 3. Using the identified mode! M(s} and the model
that without a measure of model error it is very easy error 6{w). synthesize a robust control (e.g.. Sec-
to destabilize the system— particularly when the goal tion 2.2.7.5}).
is high performance—as in SBL. Adaptive calibra- 4. Calculate gy — stability margin. This is the
tion is an approach which incorporates a measure of dashed curve in Fig.11.2-41. Compare to model
model error with robust control design in an iterative error & both plotted in Fig. 11.2-42. If acceptable
way so that identification is performed only where it go to Step 7 and implement controiler. Other-
is needed. A proposed adaptive calibration system wise go to Step 6.
is shown in Fig. [1.2-39. with test results. using the 6. Modify filter windows. number of parameters
CSDL #2 model. shown in Fig. 11.2-40. The adap- {e.g.. number of modes). or input spectrum and
tive calibration procedure involves the following then repeat Step 1 to obtain new ID model.
steps: Fig. 1.2-42 shows result of identification atier
1. The model M(s) is a 10-mode model which has one mode is added in the frequency domain
been obtained from 1,0 data. region where the test fails.
PERTCRUANCE PERFORMANCE
MARCIN - 1D MODEL
STEP 4 + MODEL ERROR
LSS MODEL ERROR
MODEL 0 ! il ekl ox ]
INPUTS ERROR on ATDAMETR.C COMPARATOR r‘—" Cg:;.'ézL
STEP 2 STEP 5 STEP 3
MODEL
Ple.n) NOT
— on HARDWARE
(!‘,n @ IMPLEMENTATION
INPUT PARAMETRIC ouUTPUT STEP *
FILTER 10 b-j FILTER
(WINDOW) STEP 2 (WINDOW) MODIFY WINDOWS,
« PARAMETERS
! 3 4 MODEL STRUCTURE
STEP ¢
Fig. 11.2-39 Adaptive Calibration for LSS
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7. Implement controller.
This strategy has been successfully implemented
in ground test hardware. Similar techniques are

‘ [Gre. 1}
being used for adaptive (hardware) gun turret stabi-

hzation for an Army helicopter weapons platforms. Using Internai Balancing Theory™. Z.-j
. AlAA J. of Guidance & Control,
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APPENDIX D

STARILITY THEORY FOR ADAPTIVE SYSTEMS: METHODS OF AVERAGING AND
PERSISTENCY OF EXCITATION**

By:
R.L. Kosut* B.D.0. Anderson and I. Mareels#
Integrated Systems, Inc, Australian National University
101 University Ave. Research School of Physical Sciences
Palo Alto CA 94301 Canberra, ACT 2600, Australia
ABSTRACT

A method of averaging is developed for the stability analysis of
linear differential equations with small time-varying coefficients which do
not necessarily possess a (global) average. The technique is then applied
to determine the stability of a linear equation which arises in the study of
adaptive systems where the adaptive parameters are slowly varying. The
stability conditions are stated in the frequency-domain which shows the

relation between persistent excitation and unmodeled dynamics,

*Supported by AFOSR under contract F49620-C-84 0054 while this author was a
Visiting Fellow at the Australian National University.

#Supported as a Research Assistant by the National Fund for Scientific
Research, Belgium, which support is acknowledged.
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INTRODUCT TON

For a large class of adaptive feedback systems, as well as for some
output error identification schemes, a stability analysis in the neighbor-
hood of the desired behavior leads to investigating the stability of the
following homogeneous linear system of differential - operator equations
(see e.g. (1] - [3])

6 = - € ult) H(u(-)'6()), ¥t eR,

where 6(0) € RP, ¢ is a positive constant, u(-): R+ + RP is regulated and

bounded, and H 1is a linear time-invariant operator whose transfer function
H(s) is proper, rational, and stable, i.e., all poles have negative real

parts.

Linearization and Local Stability

In [2], for example, system (1.1) is obtained as a result of lineari-
zation of the adaptive system in the neighborhood of a "tuned" system, i.e.,
a system where the adaptive parameters are set to a constant value 6, ¢ RP
and whose behavior is deemed acceptable. Hence, in (1.1), 6(t) is the
vector of parameter errors between the parameter estimate at time t and
the tuned value 6,, u(t) is the regressor vector from the tuned system
(e.g., filtered revisions of measured signals), and the scalar € {is the
magnitude of the adaptation gain which essentially controls the rate of
adaptation. The operator H depends on the actual system being controlled
or identified and also on the tuned parameter setting 6,.

It is shown in [2,3] that if the zero solution of (1.1) is uniformly

asymptotically stable (u.a.s), then the adaptive system is locally stable,
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i.e., the adaptive system brhavior will remain in a neighborhood of the MAEICH
lli desired behavior provided the initial parameter error 6(0) and the effect of FIE
: external disturbances are sufficiently small. Although the results in [2,3] 'a‘#'
b &
E~H were arrived at using input-output properties [16], the local stability e %;
:"“ : N n":
: property also follows from the results on "total" stability [4]. f:}“ ”4
!‘ JeE
. LS

Unmodeled Dynamics and Slow Adaptation

In the ideal case there are a sufficient number of adaptive parameters

ST
o

(the number p) such that the tuned parameter setting results in H(s) being
strictly positive real (SPR), i.e., Re ﬁ(jm) >0, ¥w € R+. Under these
conditions, we have the following results (see e.g , [5]1-18], [11): (1) the
zero solution of (1.1) is stable, i.e., 8(t) is bounded but not necessarily

constant; (2) if, in addition, u(t) is persistently exciting, then the zero

’.

b

b
-

solution is uniformly asymptotically stable (u.a.s.), thus, 8(t) = 0
exponentially fast as t » », The trouble starts when there are an
insufficient number of parameters to obtain ﬁ(s) ¢ SPR, as is the case in
adaptive control when the plant has unmodeled dynamics (see e.g. [2, 7],
rna2d.

In this paper we will examinehthe stability of (1.1) when € is small,

u(t) is persistently exciting, and H(s) is not necessarily SPR but only

stable. Reidle and Kokotovic [9] refer to this case as "slow adaptation"
and by using the methods of averaging described by Hale [10], they show that
i the stability of the zero solution of (1.1) is critically dependent on the
spectrum of the excitation in relation to the frequency response ﬁ(Jw).

With the same assumptions, Astrom [11] uses averaging techniques to analyze
the interaction between unmodeled dynamics and external inputs in the
counter-example posed by Rohrs et al. [12]. Both these analyses require the
assumption that u(t) is almost periodic. 1In this case Reidle and

o Kokotovic [9] show that the zero solution of (1.1) is u.a.s. if

S SO SNeTR T TR T e

v A ¥ lal(w)a(w)*] Re H(Jw))> 0 (1.2)
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where @ and {a(w), o+ 2} are, respectively, the Fourier exponents and ;
' coefficients of u(t), Condition (1.2) can be considered as a positivity ;;

condition. but unlike the SPR condition Re H(Jw) is not required to be ":f:}\

-

positive at all frequencies.
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Averaging: Uses and Limitations

.t DR R
R T

‘ The main contribution of this paper is to extend the theory of

‘ averaging to include the case when u(t) does not have a (generalized)
Fourier series representation, but is only known to be regulated and
bounded. Thus, u(t) need not be almost periodic nor even possess a (global)

average value, We also state stability conditions in the frequency-domain

- in A form similar to (1.2). Analagous results are stated for the discrete-

time system

i 8(t+1) = 8(t) - € u(t) H(u(+)'e(+)), ¥t ez, (1.3)

; LN
where we only require u(+) ¢ lz and H to be linear-time-invariant and ﬁ;;{'
2a 4= amli:

stable. Averaging results for (1.3) with H = 1 and with u(-) not almost

. LIRS
' L A A

periodic can also be found in [13]; and this suggests the possibility of e ;Q;:f

being able to dispense with the almost periodicity assumption on u(+) and

e

. analyzing (1.1) with a non-SPR operator H.

The averaging theory developed here, as well as averaging theory in

! w

general, has its uses and limitations for adaptive system. 1In the first _
place, the theory requires slow adaptation which can be counter-productive EEEN
‘ because performance can be below par for the long period of time it takes ;
;A for the parameters to readjust. Secondly, averaging theory is a form of
linearization, thus, the (nonlinear) adaptive system must be initialized in
a (not necessarily small) neighborhood of the tuned system. On the positive

side, however, we do obtain frequency domain conditions which explain the

‘ system behavior near the tuned solutions. In this sense, we can consider
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the results of averaging theory to be necessary conditions for good
performance of adaptive systems,

To obtain the heraldrd goal of frequency domain stability conditions,
it may be inevitable to encounter linearization. Somewhat less intuitively
appecaling results can bc obtained without resorting to direct linearization
or averaging, e.g., in [2,3], [14] and [15] the results arise from a

combination of small gain theory and perturbation theory.

Organization of Paper

The paper is organized as follows: 3Section 2 develops methods of
averaging for general systems described by linear differential equations -~
both homogenous and inhomogeneous systems are considered. The reader can
regard this section independently from the rest of the paper, because the
systems of linear equations considered are the most general and need not
arise from adaptive systems. In Section 3 we apply the general results of
Section 2 to (1.1) and obtain frequency domain stability conditions. 1In
Section U4 we analyze the effect of unmodeled dynamics. In Section 5 we
state the discrete-time versions of the results obtained in Section 1, and,

as in Section 1, these results are of general interest.
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. METHOD OF AVERAGING

2.1 LINEAR HOMOGENEOUS SYSTEMS

In this section we will consider the homogeneous linear system

X = € A(t)x (2.1)

Lemma (2.2)

Suppose in (2.1) that A(-): R » R™D s regulated and bounded. Then

¥s,7 ¢ R, the transition matrix ¢(s+1,s) of (2.1) is given by

¢(s+1,s) = expler ;1(3)] + R(s,e1) (2.3)
where
S+ 1
- 1 J
AT(S) ol A(t) dt (2.4)
s

is the local average value of A(t) on the interval s < t < s + 1, and

[IRCe, en)||, < rlet||Al],) == Cet|[A]] )% explet|[A]l,) (2.5)

See Appendix for proof.
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(1) Assuming that A(t) is regulated and bounded is sufficient for the XL TN

- » .:\" L
re. existence and uniqueness of solutions [17]. :ixxu*:
. Y 3
k- (2) Observe that Lemma (2.2) is valid ¥s,t ¢ R_ and ¥c ¢ R. 1In the ~x;$u’%
~ d
S

sequel we use Lemma (2.2) only for the case when £ > 0 and €1 is small.

m
i

The stability properties of (2.1) can be established by application of

Lemma (2.2) as stated in Theorem (2.9) below. We first require

-
Definition [16] (2.6)
&~ The function p(-+): chxn R, defined by
b w(M) = lim (]I + aM]; - 1)/a (2.7)

a0

. . . . n
is called the measure of the matrix M, where ||, is the matrix norm on C xn

induced by the vector norm |+| on c”. For example, if |+| is the Euclidean

norm then u(M) = max A[(M+M¥)/2]. For any norm on Cn we have the relation,

e -u(-M) < Re A(M) < u(M), ¥M e C™X" (2.8)
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Theorem (2.9)

Suppese A{t) in (2.1) is regulated and bounded with the sequence of
local average values {KT(kT), ¥k € Z,}. Then:
(i) If 3T > 0 and a > 0 such that

WAL(KT)) < - o, Wk €2, (2.10)

then 3 n > 0 such that ¥eT € (0, n) the zero solution of (2.1) is u.a.s.

(ii) If 3 T > 0 and a > 0 such that

w-AL(KT)] < - o, ¥ko€ 2, (2.11)

then 3 n > 0 such that ¥eT € (0, n) the zero solution of (2.1) is completely

unstable,

Remarks

(1) The proof (see Appendix) is based on Lemma (2.2) and the
inequality [16]:

exp{—eTu[-KT(kT)]} < 16((k+1)T,kT) - R(KT,eT)|

< exp(eT wlA(kT)]Y, Vk € 2, (2.12)
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where &(e,+) and R({+,*) are as defined in Lemma (2.7).
i (2) Whenever (2.10) holds we have |exp{cTKT(kT)]| <1, ¥k ¢ Z, which
insures a contraction (for small €T) on the interval s <t < s+ T, It is
< possible to weaken condition (2.10) and still nhave a contraction by just
enforcing lexpf{eT KT(kT)}l < 1 directly as is done by Coppel [18].
I' (3) Note that Thereom (2.9) can be stated in terms of stronger

conditions on u[RT(s)], ¥s ¢ R .

Using the same technique, but allowing A{(-) (equivalently KT(-)) to

possess a global average, we obtain the following sharper result.

-
- Theorem (2.13)
.7 Suppose A(L) in (2.1) is regulated, bounded, and has a (global)

. = nxn |

. average A e R , 1.e.,

lim A (s) = A (2.14)
T-»::)
.. uniformly ¥s ¢ R, with Re A(K) = 0. Under these conditions:

(i) If 3 a > 0 such that
Re A(A) < - a (2.15)

then 3 €, > 0 such that ¥e ¢ (0, €,), the zero solution of (2.1) is u.a.s.

(11) If 3 a > O such that
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then 3¢, > O such that ¥¢ ¢ (0, €,), the zero solution of (2.1) is unstable,

A
RN B

2.
.
2

Discussion
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.....,
Pte

The results in Theorem (2.9) and Theorem (2.13) generalize some
results obtained by averaging methods such as those described by Hale [10],
or as obtained by Coppel [18] using the notion of integral smallness.
Theorem (2.13) is a classical result of averaging theory, except that as

stated allows for functions which are not necessarily almost periodic. The

¥ v W -
NERERERE RN PR
) 3 '

class of functions allowed in theorem (2.13) - regulated, bounded, with an
average - is not precisely characterized. Obviously it includes the class

of asymptotically almost periodie functions of the form [19]

A(t) = Ap(t) + A, (t) (2.17)
: - nxn
where Ap(t) is almost periodic and A1(') € L.1
Theorem (2.9) considers a larger class of functions -- those without
an average -- at the expense of a weaker result: the stability --

instability boundary is not as sharp as in theorem (2.13).
An example of a function which satisfies the conditions of theorem

{(2.9), but not of (2.13) is:

A(t) = A, + (1//2) A, (sinlog t + cos log t) (2.18)

where A1 = Ai > 0, i=1, 2 such that A, - A1 > 0. This function does not

have a global average, as can be seen from
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s+T
% J A(t)dL = A + A1fsin log (s+T) + T sin log (1 + %)] (2.19) e
s
DN
ok
---,_'- .‘:.._‘
» >*
However, it satisfies the conditions of Theorem (2.9) because from (2,18},

s+T
1 J actyoesa, - A, >0, ¥seR, ¥T>o0. (2.20).
]

From the proof of Theorem (2.9) we can extract a value for n and also
state bounds on the exponential rates of growth or decay of the transition

matrix ¢{(t, 1) for all t > 1. Specifically, we have:

Corollary (2.21)

If A(t) is regulated and bounded with ||A(+)|]|_ < m, then:

(i) Whenever (2.10) holds for some T > 0, the zero solution of (2.1)
is u.a.s. V¥eT € (0, n) where:
(a) n > 0 satisfies exp (-na) + r(mm) = 1 (2.22)
(b) ¥t,r e B, witht > 1, (2.23)
16(t,1)] < K exp(-e(t-1)8)
where

K = exp(eT(m+B)) > 1

exp(-¢ TB) = exp(~€Ta) + r(eTm) < 1
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(ii) Whenever (2.11) holds for some T > 0, the zero solution of (2.1)

;L

is unstable VeT € (0,n) where:
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2

e
e
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[

(a) n > 0 satisfies exp(na) - r(mm) =1 (2.24)
(b) ¥t,t e R_witht > 1, (2.25)
[6(t,1)] > K exp(e(t 1)8)
where
K = exp(-eT(m+B)) <1

exp(eTB) = exp(eTa) - r(eTm) > 1

2.2 LINEAR INHOMOGENEOUS SYSTEMS

In this section we extend the results of Section 2 to the inhomo-

geneous system

x = e(p(t) + A(t)x) (2.26)

Theorem (2.27)

Suppose in (2.26) that A(+): R+ R™M and p(-): R+ R" are regulated :
and bounded. Let AT(s), ts,r € R+ denote the local average value of A(t) as é i
defined by (2.4) and let pT(s) denote the local average value of p(t)
defined by
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p (8) = % J p(t) dt. (2.28) Eﬁ%ﬁﬂ

. Wyt ¥
Under these conditions, ¥s,1 ¢ R+, %f\;y

[x(s+1)=¢(s+1.8) x(s) + 5151(8)]| < qler, | a0 ) el (2.29) e
where i?_:f
[ -...-
2 b~
alet,||Al]) = (er)*|]A]]| exp(et|]Al]) (2.30) SN
\.
e

Combining this result with Theorem (2.9) and Corollary (2.21) gives

Corollary (2.31)
Under the conditions of Theorem (2.27), if 3 a > 0 and T > O such that
uwlAL(kT)] < - a, ¥k € 2, (2.32)
then ¥eT € (0, n),

Hxll, £ ay sup |pp(kT)| + aallpll, (2.33)
keZ,

with

qQ: = €T exp(eT(m-8))/(1 exp(-cTB)) (2.34)

q, = €T exp(eTm)[1 + €Tm exp(eTm)/ (1 exp(-€TB))
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where m = ||A|]|_ and where 1 > 0 and R > 0 satisfy (2.77) and (2.23),

respectively, f.e.,

exp(-na) + (mm)’exp(nm) = 1
(2.35)
exp(-€TB) = exp(~eTa) + (eTm)Zexp(cTm)

Remarks

Observe that as €T + 0, q, » 1/8 and q,/¢T » 1. Hence, as €T =+ 0 we
see that ||x||_ is overbounded by the largest value of the sequence of local
averages {|5T(k1)|, k €2} and not ||p||,. For example, if p(t) = sin 2t

+ T
then ||p||_ = 1 whereas |pT(kT)| =0, ¥k € Z_.
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3. FREQUENCY-DOMAIN STABILITY CONDITIONS

—— e e o e

In this section we apply the results of Section 2 to the homogeneous

linear system (1.1), i.e.,

§ = -e u(t) H(u(-)'a(+)). ©(0) ¢ RP (3.1)

where H is a linear time invariant operator with transfer function H(s).
We first show that for sufficiently small € > 0, the stability analysis of

(3.1) can be determined from the stability of an "averaged" system

6 = ¢ avglu(t)(Hu)'(t)}e

where avg {-} has yet to be precisely defined. Using this result we then
establish stability conditions in the frequency-domain involving the Fourier
transform ﬁ(jw) and the "spectral" content of u(t), where this notion has
also to be defined. Finally, we show that the appropriately defined
spectral content of u(t) necessarily requires that u(t) have a persistency
of excitation propertz, and that the dominant excitation should be at those

frequencies where Re H(juw) > 0.

The first step in the analysis is to transform (3.1) into a form
suitable for application of Theorem (2.9).
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Lemm.. (3.2)

Assume in (3.1) that u(t) is regulated and bounded, and H 1is a

causal linear time-invariant operator where transfer function H(s) is

.

X NN

proper, rational, and stable. Under these conditions, 3 €, > 0 such that

¥ec € (0,e,), (3.1) is equivalent to,

6 = - € [B(t) + € u(t)v(t)']e (3.3a)

where

B(t) = u(t)(Hu()")(t) (3.3b)

(hIRCROND
PP

and where the function v(+) : R+ + Rp is regulated and bounded.

l‘ —\ . "

Remarks

(1) Since v(t) is bounded, it follows that we can approximate (3.3)
to first order in ¢ by =~ ¢ B{t)e which is the form required by Theorem
(2.9). Precise conditions on this approximation are stated in Theorem
(3.11) below.

(2) Estimates for €, and ||v|[_ are obtained from the proof of Lemma
(3.2). Specifically, let H(s) = d + c'(sI-A)_1b where, with no loss in
generality, (A,b,c,d) is minimal, |c| = 1, and Re A(A) < 0. Then:

::: e, = 8L - £)/IK[[ul | (6] ul], + 2)2] (3.4)

Hvlle < (1 - 2470)/¢, (3.5)
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where K > 1 and a > 0 are found from

Jexp(th)] < K exp (-ta), ¥t ¢ R, (3.6)
with

o= 0 01+ (14 d||u||m/l°)1/2] (3.7)

1, = Ll (3.8)

where L (t) satisfies,

L, = AL, + bu(t)', L,(0) =0 e R"®P (3.9)

°

We now use Lemma (3.2) to establish frequency domain stability
conditions for (3.1). This requires that u(t) be restricted to those
functions which have a Fourier series representation on any finite interval.

A known class of such functions is defined as follows.

Definition [20]

A function f(-): R, »R" is a cg

and 3 a constant & > 0 such that any two points t,, t, € R where f() is

function if it is regulated, bounded

discontinuous are separated by at least an interval §, i.e., |t, - t,| > 6.

Frequency-domain stability conditions for (3.1) can now be stated.
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q

< Assume in (3.1) that: .:x
- \ Y Y
- ﬁz bag' Y
§ (A1) H is linear with stable proper rational transfer N z-
i function H(s) and impulse response h(t). Thus, 3 a > 0 and b > 0 such that 3 e
:} Ih(t) - n(0)s(t)| < a exp(-bt), ¥t e R, (3.12)
. (A2) u(s) ¢ Cg Wwith piece-wise Fourier series representation,
.- jwmt

u(t) = 7w lepe T, ¥toe (KT, (ke1)T], ¥k € Z, (3.13)

meZ

LY TN
v v

. \"l'
‘.Y

for any T > & where wy = 2rm/T.

rP*P by

Define the matrix sequence in

Rt = T oy ooy a)” H(-Ju ), ¥k € Z, (3.14)

Under these conditions:

(i) If 3T>6 and a > 0 such that

wl-R (k) < - (a + 2(a/p)){|u]| /Ty, ¥k ez, o (3.15)

then 3 ¢, > 0 such that ¥e ¢ (0, €¢,) the zero solution of (3.1) is u.a.s.

(11) If 3 T > 8 and a > 0 such that

R L L RN
WAL, L PR PN AL
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IR (KTY] < = (o 4 Pasb ) ull. /Ty, ¥k 2 (3.?6)

then 3 ¢, > 0 such that ¥c¢ ¢ (0, €¢,) the zero solution of (3.1) is unstable.

Remarks
(1) The existence of the piece-wise Fourier series representation
(3.13) for u(t) is guaranteed by u(s) € Cg [17]. The Fourier coefficients

ak(wm) are the coefficients of the T-periodic function

jmmt
u, (t) = ) o, (u)e , ¥t € R, (3.17)
meZ

which is equal to u(t) for kT < t < (k+1)T and, in general, not equal to
u{t) on any other interval, Thus, uk(t) is just u{t), ¥t e [KT, (k+1)T],
repeated with period T. Observe that the spectrum of uk(t) is what
determines the stability-instability boundary and not the spectrum of u(t).
These will merge only when u(.) has a (global) average as assumed in Theorem
(3.23) below.

(2) The matrix RT(k) can be equivalently expressed as the local

average value of uk(t)(Huk); (t), t.e.,

(k+ )T

u, (t)(Hu ), (t)at (3.18)

R (k) = =
kT

T

where (Huk)m(t) is the "steady-state" part of (Huk)(t), i.e.,

- Ju t
(Hu, ), (t) = Ezz H(Ju da, (0 de " , ¥t € R, (3.19)




Y

(3) If we use the measure p(M) = max A(M+M*)/2, then (3.1%5) and

(3.16) become, respectively,
MQ ()] > o+ 2(a/b?) | |u] [2/T. ¥k € 2, (3.20)

and

MQ ()] < ~la v 2(a/p) ||l |2/T), ¥k £ 2, (3.21)
where QT(k) is the Hermitian part of RT(k), i.e.,

Qp (k) = mzz Re[a, (w)a, (w )*] Re[H(ju )] (3.22)

(5) The "initial conditicns" at t = kT contribute to the term
2(a/b?)||u]|2/T in (3.15)-(3.16) or (3.20)-(3.21). Hence, the average
energy in uk(t)(Huk);(t) must dominate long enough (T sufficiently large) to

overcome these (possibly) negative effects.

As before, if u(t) is further restricted such that RT(-) has a global
average, then we can sharpen the stability-instability boundary. For
example, if u(t) is almos. periodic then a Fourier series representation
exists ¥t € R and RT(-) has an average [10]. The stability conditions for
this case are stated as follows,
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Theorem (3.23)

Suppose in (3.1) that u(t) is almost periodic with Fourier series

Jut

ult) - alw) e , ¥t e R, (3.24)

m

where Q ¢ R are the distinct Fourier exponents and {a(w), w € f) are the

Fourier coefficients. Define the matrix R € Rnxn by

R= 3. alw) alw)* A(-jw) (3.25)
w e

If Re A(R) # 0 then 3 €, > 0 such that ¥e ¢ (0, €,) the zero solution of
(3.1) is:

(i) wu.a.s if Re A(R) > 0 (3.26)

(ii) unstable if max Re A(R) < O (3.27)
Discussion

The proof of Theorem (3.23) is entirely analogous to that of Theorem LT*T
(2.13). Theorem (3.23) is the result obtained in [9] when u(t) is almost {_;f
periodic. Theorem (3.11) is a generalization in that u(:) ¢ Cg. :%:;

Observe that the stability-instability boundary determined by (3.20) - tﬁtfﬂ

(3.22) exists if and only if S

A[QT(k)] « 0, ¥kez, (3.28)
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By (3.22), this will hold if and only if for some finite integer q > p,

rank [uk(O), uk(w,), e e uk(wq)] =p, ¥k € 2. (3.29)

Hence, Theorem (3.11) implicitly restricts u(:) € Cg to those functions

whose (time-varying) Fourier coefficients satisfy the rank condition above.

This class of functions, however, are precisely those which can be cate-

gorized as persistently exciting: =

Definition [1] (3.30)
A function f(-): R, —> R" is persistently exciting over an interval h - ;:%T
if it is regulated, bounded, and 3 constants h > 0 and B > 0 such that Qﬁ:ﬁij
N
]
s+h SRS
min x(% J f(L)f(t)'adt) > 8, ¥s e R, (3.36) A
s T

Denote such functions by u(+) ¢ PEn(h,B).

Hence, we immediately see that if u(t) in (3.1) is in PEp(h,B) and Cg -~ ;ff
then (3.29) will hold for ¥T > h > §. It is important to emphasize, Y

however, that even if u(t) is PE, u.a.s. of the zero solution of (3.1) is
guaranteed if (3.20) holds. The implication then is that u(t) must have a
dominant spectrum at those frequencies where Re[H(me)] > 0. Thus, we can

view (3.20) as a generalized positivity condition on the operator H,

Condition (3.20) is significantly weaker than the usual positivity
conditions on H. For example, a strictly proper transfer function ﬁ(s) is
strictly positive real (SPR) if it is exponentially stable and } constant
p > 0 such that [16]:
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Re TH(30)D > pH(JW| . Yoo R, (3.37) o

This condition must hold at every frequency, whereas (3.20) requires L“g?:'
Re [ﬁ(jmm)] > 0 at those discrete frequencies in R* where the magnitude of o
the input spectrum is large. Conversely, at those frequencies in R where
Re[H(Jw Y] < 0, the magnltude of the input spectrum should be small Since
(3.25) will fail if Re H(jw) < 0, ¥uw € R,, it follows that Re H(Jw) >0 at
some frequencies, hence, the motivation to refer to (3.20) as a positivity
condition.

Although condition (3.20) is weaker than condition (3.32). we do pay
the Piper. Suppose ﬁ(s) is SPR and (3.32) holds. 1If u(t) is persistently
exciting than Theorem (3.11) states that the zero solution of (3.1) is
u.a.s. for sufficiently small € > 0. However, from other arguments (see
e.g. [1]) we know that under these same conditions the zero solution of
(3.1) is u.a.s. for all € > 0. Thus, Theorem (3.11) is conservative in this
case. However, when ﬁ(s) is not SPR but (3.32) holds at some frequencies,
Theorem (3.11) is now applicable whereas the results in [1] do not apply.

In fact in this latter case when € gets too large the zero solution of (3.1)
can be unstable, even if (3.20) holds. For example, if in (3.1) u(t) =
sin(0.35t) and ﬁ(s) = 1/(s? + 2s + 2) then condition (3.20) is satisfied.
The simulations in Figure 3.1 with 8(0) = 1 show that the zero solution is

u.a.s. for € = 4§ put is completely unstable for ¢ = 8.

1 sTable (e =¢)
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4, EFFECT OF UNMODELED DYNAMICS

In this section we will consider the system

& = -¢ u(t) Hu(-)'s(-)), 8(0) ¢ RP (4.1)

‘.l “A“I
Salaly

~

where H as before is linear with stable transfer function H(s). In addition

.'..'.

2%
i
1

-
i

we assume that H(s) has the decomposition

o

H(s) = Hy(s) + A(S) (4.2)

where H (s) is SPR, i.e., § ¢ > O such that

)

% Yy

s S
_l._.Q‘ "

[

Re Hy(Jw) > p|Ho(Jw)|?, Wu e R, (4.3)
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and where A(s) represents unmodeled dynamics such that o

lon §
LY
“y ¥
L,
l’f
P

o P
e v .
) '[
s
L '
. »

‘¥

|£(Jw)| < Sy(w), ¥Yu e R, (4.4)

We also assume that u(t) satisfies the conditions of Theorem (3.11) in that ’ H
3 T > 0 such that u(t) has the piece-wise Fourier series representation RPN

met
u(t) = I alwde T, KT <t < (ksDT (4.5)

meR
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where wp = 2nm/T and k + Z . We also decompose

RS o
> akT(wm) ukT(mm) + BkT(wm). ¥m,k € 2 (4.6)
where ukT(mh) is due to predetermined inputs and BkT(wm) is due to disturb-
ances bounded by
IskT(mm)l <8 (w), ¥m e Z, (4.7)

Hence, the functions w = GH(w) and m - Gu(wm) represent, respectively,
bounds on the effect of unmodeled dynamices in H(s) and unknown elements of
u(t) as a function of frequency. Combining the above assumptions with

Theorem (3.11) and using (3.25) gives:
L emma (4.8)
The zero solution of (4.1) is u.a.s. if € > 0 is sufficiently small

and if 3 o > 0 and T > 0 such that ¥k € Z,,

AT elHo(Ju )| RelXen(w )Y} >
meZ,

qr * o 2(a/pM) | |ul| /71 (4.9)
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- ¥ (oH(mm)IIX'kT(wm)l (mm)|H°(Jmm)| (4.10)

R

with

XQT(wm) - akT(wm) akT(wm)*
(4.11)

e (w) = 8 (w8 (w) + |og (w )]

Discussion

Condition (4.8) shows that the dominant excitation must act in the
frequency range where ﬁ(s) = ﬁo(s) e SPR. Moreover, there must be enough
excitation and positivity in Re ﬁo(jw) in this range to overcome initial
conditions (the 1/T term) and the effect of unmodeled dynamics and unknown
disturbances (the Qr term). Typically, the disturbances agd unmodeled
effects occur at high frequencies and the known efforts in H (s) and °§T(wm)
at low frequencies. For example, if there is a frequency w, such that

[]
ukT(w), H,(jw) small for w > > w,
(4.12)
GH(w), Gu(w) small for w < < w,

then condition (4.8) holds if ¥k ¢ Z_,

A plH,(Ju)|® RelXpr(w )]} > > ) 8,y (w 6% (w ) (4.13)

<
wm— mc wmzwc
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o Observe that robustness conditions (4.8) or (4,13) are dependent on the in

‘ put signal spectrum as as well as the unmodeled dynamics. In non-adaptive
linear systems the robustness conditions only involve system dynamics.
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5. DISCRETE-TIME SYSTEMS

In this section we state the discrete-time versions of Lemma (2.2),

Theorem (5.2) and Theorem (2.13) for the linear homogeneous difference

equation

x(t+1) = (I + € A(L)) x(t),

(5.1)

The results are identical to the continuous-time results, and the same

comments apply mutatis mutandis.

appendix.

Lemma

Suppose in (5.1) that A(-) € ngn. Then ¥s,1 € Z,, the transition

matrix ¢(s+1,s) of (5.1) is given by

¢(s+1,8) = I + g1 KT(S) + R(s,e1)

where

The proof of the following Lemma is in the

(5.2)

(5.3)

(5.4)

is the local average value of A(t) on the interval 8 < t < 8+ 1, and

la
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i N

& SES)
)

) Kl iy
™ -ﬁitgi;
- :" ‘:"'::‘:;

-"':"-k}..
- (o)Al )" -0+ ALY, ¥ > 0 NS
R [RC-, vl < -
1 g b
, §(c1||A]|m)’, ¥o < 1/] Al (5.5)
-
>
Remarks
o — ==
s (1) A similar result can be found in [13].
- (2) The conditions on A(*) : Z =+ R™*" are weaker than those imposed
- in the continuous-time version in Lemma (2.2). In the discrete-time case we
' only need A(-) € 22*” whereas in continuous-time A(+) is regulated and
) bounded.
<
The following stability result follows immediately from Lemma (5.2).
[ Theorem (5.6)

Suppose in (5.1) that A(-) € gzxn with the sequence of local average
values {KT(kT), k € Z+}. Then:

(i) If3 Te¢e zZ, and a > 0 such that

WAL (KT)] < - @, ¥k € Z, (5.7)

then 3 n > 0 such that ¥eT € (0, n) the zero solution of (5.1) is u.a.s.

(1) If 3 T ¢ Z, and a > 0 such that

wl-Ap(kT)] < -a, ¥k e Z, (5.8)

L et . [ T Lt e e ..t .
Lo e tet Lt LA RN .. . vt e T e e et e
TadCUA L AL TV I AR A e e T Tt T e e e - A

Ay e .
DS . .
U T B B B AT LS P LY DRI
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then 3 1 > 0 such that ¥:T « (0, n) the zero solution of (5.1) 1s unstable.

If we let A(-) nave a (global) average than by applying the same
argument in the proof of Theorem (2.13) we obtain the following analogous

result,

Theorem (5.9)

nxn

Suppose in (5.1) that A(+) ¢ & with (global) average Ae Rnxn,

lim ET<s) - A (5.10)
T-vcn

uniformly ¥s € Z  where Re A(K) + 0. Under these conditions:

(i) If 3 a > 0 such that

Re A(R) < - a (5.11)

then 3 €, > 0 such that ¥e¢ ¢ (0, €,), the zero solution of (5.1) is u.a.s.

(i11) If 3 o > 0 such that
max Re A(A) > a (5.12)

then 3 €, > 0 such that ¥e ¢ (0, €,), the zero solution of (5.1) is

unstable.
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APPENDIX

A. Proof of Lemma (2.2)

Using the Peano-Baker series representation for the transition matrix

of (2.1) gives:

S+ 1
¢(s+1,8) =1+ ¢ J A(t)dt
S
- 5+ 1 b b1
o 7 K [ ACL,) [ At,) . . . j At ety ... dt, (A1)
k=2 s s s

Using definitions (2.3) ~ (2.4) for R(s,e1) and KT(S), respectively,

together with the series expansion for exp(et ET(S)) results in,

R(s,e1) = § [-(et KT(s))k/k!

k=2 |
ser O te-1 R
. j A(t,) J Alt,) . . . j ACt )bt .. dt, 1 (A.2) -
S 8 S .
' P
<2]  (et||al|)%/kt,  ¥s eR, (A.3) .
h=2 o
= (et||A]]|)? exp(et|]Al],) (A.4) y

since ||K1(')||° ~ ||AC)]|_. This proves (2.5).
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‘. NaRCN
A
: B. Broof of Theorem (2.9) and Concilary (2.21) NNDE
B . nxn & ad
l The following inequality holds ¥M ¢ R™" and ¥t ¢ R, [16]: e
: FOAG)
L‘n-.h
: b T
F exp[-tu(-M)] < |exp(tM)| < exp [tu(M)]. (B.1) g /
I q.
Combining this inequality with (2.3) gives. ey
| - o
expl-etu(~a_(s)] < lo(s+1,5) - R(s,e1)] R
- < expletu(A_(s))], ¥s,7 € R (B.2) AN
B - 1 + G AT
)

which implies,
i lo(s+1.8)" < explemu(h _(5))] + rcm) (B.3)

l¢(s+1,8)|

Iv

exp[-cTu(KT(s))] ~ r(em) (B.4)

where we have used (2.5) with ||A}]_ = m.

We first prove part (i) by using condition (2.10) and inequality (B.3)

with T = T and s = kT. This gives, e :f:i::

R

[6((k+1)T, kT)| < exp(-€eTa) + r(eTm), ¥k € z, (B.5)

' We now need to show that 8(kT) + 6((k+1)T) is a contraction mapping, i.e., ——
the right hand side of (B-5) is less than one for sufficiently small €T, :
f.e., 3 n>0and 8 > 0 such that ¥ €T ¢ (0, n),

) 4
R -
.
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exp(—«Tu) + r(.Tm) = exp(-.TR)
(B.6)

exp{~nu) + r(nm) = 1

From the definition of r(+) in (2.5) it is obvious that (B.6) holds.
Observe that the expressions in (B.6) appear also in conditions (2.22),
(2.23) of Corollary (2.21).

For any t, s € R, with t > s, there exists an integer k > 0 such that
s+ KT <t <s+ (k+1)T. Thus,

fo(t,s)] = |o(t,s+kT)¢(s+kT,s+(k-1)T) . . . ¢(s+T, 8)|
< lelt,s+kT)lexp (-ekTB), by (B.6)
< |o(t,s+kT)|exp (-e(t-s-T)g), by kT > t-s-T
< exp(eT(m+B))exp (-e(t-s)B) (B.7)

by the inequality [16]:

t
fo(t,s+kT)| < expl( J uleA(1)]dT) (B.8)
s+kT
< exp(em(t-s-kT)), by u[A(1)] < JA(D)] < m
< exp(emT) (B.9)

by t-s-kT € (0,T). This proves part (i) of Theorem (2.9). Note that (B.7)
18 the same as (2.23) and, hence, we have also established part (i) of
Corollary (2.21).
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Using the same techniques, but starting with (B.4), we can also prove

parts (ii) of Theorem (2.9) and Corollary (2.21).

C. Proof of Theorem (2.13)

Assumption (2.14) means that ¥§ > 0, 3 T,(6) > O such that ¥T > T,

|A;(s) - Al <6, ¥s R, (c.1)

_———

From (3.3), with |JA(-)||_=mand T > T (8),

Ie s'T,s\l < exp[stu(K + RT(S) - E)] + (eTm)? exp(eTm) (C.2)

expleT(u(R) + 6)] + (eTm)? exp(eTm) (€.3)

I A

Now, ~roose as a norm on R,

/ g ._'_ -
= |x| = (x'Px)1 2 (C.4) e
@
' where P = P' > 0 is the solution of the Lyapunov equation, ‘1:
_ - R
A A'P + PA + 2I = O (C.5) T e
‘ DO

Zala

Under this norm, the measure of a matrix M ¢ Rnxn becomes,




FECVPWE RS N BT G N U WP Rt i Rt

¥

.
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.

D) '{l.' A."l

L(M) = max A(MP + PM)/? (C.6)

Hence, (C.3) becomes,

[o(s+1,8)] < exp[-€T(1-8)] + (eTM)? exp(eTM) (c.mn

By assumption (2.14) it is always possible to select T, (8) in (C.1) such
that § < 1. By inspection of (C.7), these exists €, > 0 such that ¥e
€(0,¢e,), |¢(s+T,s)| <1, ¥s ¢ E_, which completes the proof of part (i).
Part (ii) can be proven in an analagous manner starting with (B.l4) and using

(C.5) with A replaced by -A.

D. Proof of Theorem (2.27)

By the variation of constants formula any solution x(s+1), ¥s,1 ¢ R,,
of (2.26) satisfies,

S+1

x(s+1) = ¢(s+1,8)x(s) + € I ¢(s+v1,u) p(u) du (D.1)
s

where ¢(s+1,8) is the transition matrix for x = € A(t)x.

Set
S+ 1
f(u) = J p(t)dt (D.2)
u
Hence,
u" -
: f(s) = 1 pT(s) (D.3)
e
i. g-
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f(s+:) =0 %?:¢

where 51(5) is defined in (2.28). Using (D.2) and integrating (D.1) by = A

parts gives, A5

x{s+1) = ¢(s+1,8)[x(s) + c151(s)] " e

S+ 1

+ €? .[ ¢(s+1,u) A(u) f(u) du (D.4) T
S .

Pw‘\ . -
O VT
LR P
P

Using,

XXX

lo(s+1,u)| < exp (e(s+t-w)}|Al]|)) (D.5)

LA

Ir@)] < <llell,

in (D.4) gives, X | ,..,E,_J‘

v '
e
A
5

.
’
.

|x(s+1) - ¢(s+1,s)[x(s) + 5151(8)]| N

PR

"l"v"v 4
LA
AN

X

S+1
[ 3
e <14l 0 1pl1. | emrecsrrw)|[a]1,3du (0.6)
S

1

v ae

exllpll, (exper][A]]) - D

i

(e 02 ||a]], expCer||Al] )] ]pl],, by e™-1 < 0e®, o € R,

ater, [|al1)1Ip] ], (D.7)
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which establishes (2.28)-(2.30).
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- E. Proof of Corollary (2.31)
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For any t e R,, 3 integer k > 0 such that kT < t < (k+1)T.

"a
'n'.
P |
ok

Hence,

-
-,
A

<y YW
2o
e

. -
L

R

t
]x(t)] = |o(t, kT) x(KkT) + ¢ J ¢(t,1) p(1) d1| (E.1)
kT

< exp(eTm) ([x(kT)| + et [[p]].) (E.2)

where m = ||A}]|_. Since (2.32) holds by assumption, it follows that
(KT, (k-1)T)] < exp(-€¢TB) where B satisfies (2.35). Combining this with
(D.7) for t=(k+1)T gives,

[x(kT)| < exp(-eTB)[|x(k-1)T)| + CTHST”«:] + qleT,m)||p|}, (E.3)

Using (E.3) recursively together with (E.2) and the assumption x(0) = 0
gives,
[X(kT)| < (€T exp(-€T8)[[|py|l, + aCeT,m)|[p]],
« (1 + exp(~€TB) + ... + exp(-(k-1)eTB))

< (T exp(=eT8) | |ppl ], *+ aleT,m)||p}| )/ (1~exp(-eT8))
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Combining this with (E.2) gives the results (2.33), (2.34).

F. Proof of Lemma (3.2)

Using H(s) = @ + c'(sI—A)-1b Wwe can write (3.1) as

8 = -e(duu'® + uc'x), 8(0) ¢ RP
(F.1)

x = Ax + bu'8, x(0) =0 e R"
We now use the Lyapunov transformation developed in [9] where

x = L6 (F.2)
and L satisfies,

L = AL + bu' + e(dLuu' + Luc'L)

L(0) = 0 € R™P (F.3)

We will show subsequently that |L(t)| is bounded if € is sufficiently
small., In fact, if € 1is not small enough it is possible that |L(t)| - ®
in finite time. Assume for the moment that 3 €, > 0 such ¥e ¢ (0, ¢,),
IL(t)| is bounded. Combining (F.1) - (F.3) gives,

@ = ~¢ (duu' + uc'L)e (F.4)

.
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We can decompose L as follows:

L=L, +e€el, (F.5)
where
L, = AL, + bu' (F.6)
: L, = AL, + d(L, + eL,)uu" + (L, + eL,)uc'(L, + €L,) (F.7)
.
s
Thus, (F.L4) becomes
8 = -e[duu' + uc'L, *+ euc'L,8
= -g[u(Hu)' + euc'l,]o (F.8)

that |L(t)| is bounded.
By the variation of constants formula, any solution

satisfies,

t
L(t) = L(t) + ¢ J exp[(t-1)A] G[t, L(1)] dr

where G(t,L): R, x R"® + R™P is defined vy,
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which is precisely the form in (3.3) with v = ¢'L,. It remains to prove

L of (F.3)

(F.9)
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G(t,L) = dLu(t)u(t)' + Lu(t)ec'L (F.10)
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L] < & => |G(t,L)]| < g(2)|L] (F.11)

where

g(®) = |Jul|, (d]]u]], + &) (F.12)

Since Re A(A) < 0 in (F.1), there exists positive constants K and a such
that |exp(tA)| < Kexp (-at), ¥t e R,. For those values of t > 0 for which
L(t)] < & we have from (F.11),

t
IL(t)] < 2, + € k g() I exp(-a(t-1))|L(1)]|dx (F.13)

°

where £, = ||L,]|_ < &. By the Bellman-Gronwall Lemma [16],

"0
[L(e)] < =k g) [a - eK g(L) exp{—-(a - eK g(2))t)] (F.14)

for all values of t > 0 for which |L(t)| < &, provided that a - ek g(L) > 0.
Hence, |L(t)| < & for all t if
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L, a’/la - tk g(t)] < 1 (F.15)
E:;: Combining (F.14) and (F.15) gives
"
P e < a (a-2,/0K 2t Jul] (a]u]], + 23 (F.16)

Choosing £ = £, where

" R, = 2, [1+ (1 +a]fu]|/2)""?] (F.17)
-
S maximizes the right hand side of (F.16). The results in (3.4) - (3.9)
To. follow, This proves Lemma (3.2).
G. Proof of Theorem (3.11)
Ii Using Lemma (3.2) we have that ¥e € (0, €,), (3.1) is equivalent to,
6 = -~ € F(t)8 (6.1
b,
e F(t) = u(t)(Hu)(t)' + € ul(t)v(t)
with e, and ||v||_ are given in (3.4)-(3.9). Thus, we have the local
average,
~ L* 112
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N ET(k) - % f F(t)dL (G.2) 2 el
! KT

i

! (k+1)T (k+1)T

i - % J u(t)(Hu)(t)'dt + ; j u(t)v(t)'dt (G.3)

e kT kT

. (k+1)T

' = R.(k) + % I u(t) (Hu) ()~ (Hu ) (t)]'dt

; kT

g + =] ultvie)rae (G.4)

- KT

D

where we have used the expression for RT(k) in (3.18) and the definition of
(Huk)u(t) in (3.19). Using assumption (3.12) we will show below that

3 (k+1)T

% ) u(e)I(Hu) (L) - (Hu)_(t)]'dt] < 2(a/b) | |ul|? (G.5)

',- kT

o Hence, from (G.4), -

» . .
u[-FT(k)] Sul-Rp()] + 2(a/0) | Jul | /T + € ||ul[}Iv]], (G.6)

: -ase |ullglivlla (G.7)

»

'.::; by (3.15). Using Theorem (2.9) with € < a/(||u]|_]|v]|_ ) establishes part

:l: (1). Part (11) follows by using (3.17) to overbound u[FT(k)]. ~ -

e S TR e

] We now establish the bound in (G.5). For kT < t < (k+1)T, -

- -

» 113 4

b ;-:,'--_".;4_'.;_ el R S RSO e N L e N e SRS R




(Hu)(t) = I h(t-1)u(1)d

by definition (3.19).

| (Hu)(t) = (Hu)_(t)] < ||u}], (a’b) [e

-]

t

- f h(t-1)u, (1)dT + )

°

k=1 (r+1)T

r=0 rT

(by definition (3.17) for uk(t))

t-kT

Y

-]

= (Hu) (t) - f

k=1 t-rT
Du, (t-1)dt + ] J
r<0 t-(r+i

h(1)uk(t—1)d1 +
t-kT

Thus, from (3.12) we have

-b(t-kT)

h(t-r)ur(r)dT

h(r)ur(t-t)dr

)T

k-1

)

r=0 t-(r+1)T

k-1
)

r=0

t-rt

I

(

h(T)ur(t'T)dT

D= (re1)T)_ -blt-rt)

Using this expression in the left hand side of (G.5) gives the upper bound,

K+1)
] fuCe)]+| (Hu)(t) ~ (Hw)_(t)|dt < [Jul|2(arb?)(1-€"
kT

o1 + (eb

k-1 _, _
T_1) 2 e (k P)bT]

r=0

bT)




~(k+1)bT
- e '
-bT
e

1

1

Hull: (a/b‘)(1-5bT)[1q(ebT-1)[ 1

o,

AC N
{by the geometric series formula) ~~U\§

-
>

w
o

~kbT

> 1l l2(arp?) (1-€ Py (1-e7KPT)

]
)

< 2l |ull2(asp?)
i which establishes (G.5) and completes the proof.
H. Proof of Lemma (5.2) o
-
N
The transition matrix for (5.1) is given by R

S+ 1-1

I ¢(s+1, 8) = [ (I « € A(L)) (H.1)
. t=s

s+ 1-1 s+ =1 b
= I+e 7 ALY+ € T A(t)) T Aty -«
i t=s t,=s t,=s
+ eV A(s+1-1) . . . A(8)
= I« ETKT(S) + R(s, ¢1) (H.2)

by definitions (5.3) and (5.4). Hence, using the binomial series formulae Q
we have, -
RS
LR
IR(s, en] ¢ TG e 7 ¢ TEPHERL L (o)), e T
i P

115 coee

_.*'.-;.-":‘:'.*.‘.-_’.-" e e T e T e e e T N T e T T s e e
PRI SRR IR 0 LR S S T T G A S A A A T O R AL ) LI S LS R VI A TV ~ 4




o,

The last inequality follows by Lagrange's remainder theorem,

the Lemma.

*>

IA

I

(s el |A]] )" - (s oet]fall)

Sex|[a]] 07, ve <1/ ]al],.

(H.3)

(H.4)

(H.5)

This proves
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